466,578 research outputs found

    Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model

    Full text link
    Owing to its conceptual simplicity and computational efficiency, the pseudopotential multiphase lattice Boltzmann (LB) model has attracted significant attention since its emergence. In this work, we aim to extend the pseudopotential LB model to simulate multiphase flows at large density ratio and relatively high Reynolds number. First, based on our recent work [Li et al., Phys. Rev. E. 86, 016709 (2012)], an improved forcing scheme is proposed for the multiple-relaxation-time pseudopotential LB model in order to achieve thermodynamic consistency and large density ratio in the model. Next, through investigating the effects of the parameter a in the Carnahan-Starling equation of state, we find that the interface thickness is approximately proportional to 1/sqrt(a). Using a smaller a will lead to a wider interface thickness, which can reduce the spurious currents and enhance the numerical stability of the pseudopotential model at large density ratio. Furthermore, it is found that a lower liquid viscosity can be gained in the pseudopotential model by increasing the kinematic viscosity ratio between the vapor and liquid phases. The improved pseudopotential LB model is numerically validated via the simulations of stationary droplet and droplet oscillation. Using the improved model as well as the above treatments, numerical simulations of droplet splashing on a thin liquid film are conducted at a density ratio in excess of 500 with Reynolds numbers ranging from 40 to 1000. The dynamics of droplet splashing is correctly reproduced and the predicted spread radius is found to obey the power law reported in the literature.Comment: 9 figures, 2 tables, accepted by Physical Review E (in press

    Lattice Boltzmann method for relativistic hydrodynamics: Issues on conservation law of particle number and discontinuities

    Full text link
    In this paper, we aim to address several important issues about the recently developed lattice Boltzmann (LB) model for relativistic hydrodynamics [M. Mendoza et al., Phys. Rev. Lett. 105, 014502 (2010); Phys. Rev. D 82, 105008 (2010)]. First, we study the conservation law of particle number in the relativistic LB model. Through the Chapman-Enskog analysis, it is shown that in the relativistic LB model the conservation equation of particle number is a convection-diffusion equation rather than a continuity equation, which makes the evolution of particle number dependent on the relaxation time. Furthermore, we investigate the origin of the discontinuities appeared in the relativistic problems with high viscosities, which were reported in a recent study [D. Hupp et al., Phys. Rev. D 84, 125015 (2011)]. A multiple-relaxation-time (MRT) relativistic LB model is presented to examine the influences of different relaxation times on the discontinuities. Numerical experiments show the discontinuities can be eliminated by setting the relaxation time τe\tau_e (related to the bulk viscosity) to be sufficiently smaller than the relaxation time τv\tau_v (related to the shear viscosity). Meanwhile, it is found that the relaxation time τε\tau_\varepsilon, which has no effect on the conservation equations at the Navier-Stokes level, will affect the numerical accuracy of the relativistic LB model. Moreover, the accuracy of the relativistic LB model for simulating moderately relativistic problems is also investigated.Comment: 7 figure

    Object Tracking in Hyperspectral Videos with Convolutional Features and Kernelized Correlation Filter

    Full text link
    Target tracking in hyperspectral videos is a new research topic. In this paper, a novel method based on convolutional network and Kernelized Correlation Filter (KCF) framework is presented for tracking objects of interest in hyperspectral videos. We extract a set of normalized three-dimensional cubes from the target region as fixed convolution filters which contain spectral information surrounding a target. The feature maps generated by convolutional operations are combined to form a three-dimensional representation of an object, thereby providing effective encoding of local spectral-spatial information. We show that a simple two-layer convolutional networks is sufficient to learn robust representations without the need of offline training with a large dataset. In the tracking step, KCF is adopted to distinguish targets from neighboring environment. Experimental results demonstrate that the proposed method performs well on sample hyperspectral videos, and outperforms several state-of-the-art methods tested on grayscale and color videos in the same scene.Comment: Accepted by ICSM 201

    Radio Frequency Identification: Supply Chain Impact and Implementation Challenges

    Get PDF
    Radio Frequency Identification (RFID) technology has received considerable attention from practitioners, driven by mandates from major retailers and the United States Department of Defense. RFID technology promises numerous benefits in the supply chain, such as increased visibility, security and efficiency. Despite such attentions and the anticipated benefits, RFID is not well-understood and many problems exist in the adoption and implementation of RFID. The purpose of this paper is to introduce RFID technology to practitioners and academicians by systematically reviewing the relevant literature, discussing how RFID systems work, their advantages, supply chain impacts, and the implementation challenges and the corresponding strategies, in the hope of providing guidance for practitioners in the implementation of RFID technology and offering a springboard for academicians to conduct future research in this area

    Quantum correlations across two octaves from combined up and down conversion

    Get PDF
    We propose and analyse a cascaded optical parametric system which involves three interacting modes across two octaves of frequency difference. Our system, combining degenerate optical parametric oscillation (OPO) with second harmonic generation (SHG), promises to be a useful source of squeezed and entangled light at three differing frequencies. We show how changes in damping rates and the ratio of the two concurrent nonlinearities affect the quantum correlations in the output fields. We analyse the threshold behaviour, showing how the normal OPO threshold is changed by the addition of the SHG interactions. We also find that the inclusion of the OPO interaction removes the self-pulsing behaviour found in normal SHG. Finally, we show how the Einstein-Podolsky-Rosen correlations can be controlled by the injection of a coherent seed field at the lower frequency.Comment: 23 pages, 11 figures, theor
    corecore