32,701 research outputs found

    Evaluation of remote sensing in control of pink bollworm in cotton

    Get PDF
    The author has identified the following significant results. This project is to identify and map cotton fields in the southern deserts of California. Cotton in the Imperial, Coachella, and Palo Verde Valleys is heavily infested by the pink bollworm which affects both the quantity and quality of cotton produced. In California the growing season of cotton is regulated by establishing planting and plowdown dates. These procedures ensure that the larvae, whose diapause or resting period occurs during the winter months, will have no plant material on which to feed, thus inhibiting spring moth emergence. the underflight data from the U-2 aircraft has shound that it is possible to detect the differences between a growing, a defoliated, and plowed down field providing the locations of the fields are known. The ERTS-1 MSS data are being analyzed using an I2S optical color combiner to determine which combinations of dates and colors will identify cotton fields and thus provide the data needed to produce maps of the fields for the forthcoming season

    Evaluation of remote sensing in control of pink bollworm in cotton

    Get PDF
    The author has identified the following significant results. This investigation is to evaluate the use of a satellite in monitoring the cotton production regulation program of the State of California as an aid in controlling pink bollworm infestation in the southern deserts of California. Color combined images of ERTS-1 multispectral images simulating color infrared are being used for crop identification. The status of each field (crop, bare, harvested, wet, plowed) is mapped from the imagery and is then compared to ground survey information taken at the time of ERTS-1 overflights. A computer analysis has been performed to compare field and satellite data to a crop calendar. Correlation to date has been 97% for field condition. Actual crop identification varies; cotton identification is only 63% due to lack of full season coverage

    Multi-valued mappings in generalized chaos synchronization

    Full text link
    The onset of generalized synchronization of chaos in directionally-coupled systems corresponds to the formation of a continuous mapping which enables one to persistently define the state of the response system from the trajectory of the drive system. The recently developed theory of generalized synchronization of chaos deals only with the case where this synchronization mapping is a single-valued function. In this paper, we explore generalized synchronization in a regime where the synchronization mapping can become a multi-valued function. Specifically, we study the properties of the multi-valued mapping which occurs between the drive and response systems when the systems are synchronized with a frequency ratio other than one-to-one, and address the issues of the existence and continuity of such mappings. The basic theoretical framework underlying the considered synchronization regimes is then developed.Comment: 12 pages, 10 figures, to appear in Phys. Rev.

    Dark Before Light: Testing the Cosmic Expansion History through the Cosmic Microwave Background

    Full text link
    The cosmic expansion history proceeds in broad terms from a radiation dominated epoch to matter domination to an accelerated, dark energy dominated epoch. We investigate whether intermittent periods of acceleration are possible in the early universe -- between Big Bang nucleosynthesis (BBN) and recombination and beyond. We establish that the standard picture is remarkably robust: observations of anisotropies in the cosmic microwave background exclude any extra period of accelerated expansion between 1 \leq z \lesssim 10^5 (corresponding to 5\times10^{-4}\ {\rm eV} \leq T \lesssim 25\ {\rm eV}).Comment: 7 pages, 5 figure

    Experimental evidence on promotion of electric and improved biomass cookstoves.

    Get PDF
    Improved cookstoves (ICS) can deliver "triple wins" by improving household health, local environments, and global climate. Yet their potential is in doubt because of low and slow diffusion, likely because of constraints imposed by differences in culture, geography, institutions, and missing markets. We offer insights about this challenge based on a multiyear, multiphase study with nearly 1,000 households in the Indian Himalayas. In phase I, we combined desk reviews, simulations, and focus groups to diagnose barriers to ICS adoption. In phase II, we implemented a set of pilots to simulate a mature market and designed an intervention that upgraded the supply chain (combining marketing and home delivery), provided rebates and financing to lower income and liquidity constraints, and allowed households a choice among ICS. In phase III, we used findings from these pilots to implement a field experiment to rigorously test whether this combination of upgraded supply and demand promotion stimulates adoption. The experiment showed that, compared with zero purchase in control villages, over half of intervention households bought an ICS, although demand was highly price-sensitive. Demand was at least twice as high for electric stoves relative to biomass ICS. Even among households that received a negligible price discount, the upgraded supply chain alone induced a 28 percentage-point increase in ICS ownership. Although the bundled intervention is resource-intensive, the full costs are lower than the social benefits of ICS promotion. Our findings suggest that market analysis, robust supply chains, and price discounts are critical for ICS diffusion

    Random Sequential Adsorption: From Continuum to Lattice and Pre-Patterned Substrates

    Full text link
    The random sequential adsorption (RSA) model has served as a paradigm for diverse phenomena in physical chemistry, as well as in other areas such as biology, ecology, and sociology. In the present work, we survey aspects of the RSA model with emphasis on the approach to and properties of jammed states obtained for large times in continuum deposition versus that on lattice substrates, and on pre-patterned surfaces. The latter model has been of recent interest in the context of efforts to use pre-patterning as a tool to improve selfassembly in micro- and nanoscale surface structure engineering

    Radio Emission and Particle Acceleration in SN 1993J

    Get PDF
    The radio light curves of SN 1993J are found to be well fit by a synchrotron spectrum, suppressed by external free-free absorption and synchrotron self-absorption. A standard r^-2 circumstellar medium is assumed, and found to be adequate. The magnetic field and number density of relativistic electrons behind the shock are determined. The strength of the magnetic field argues strongly for turbulent amplification behind the shock. The ratio of the magnetic and thermal energy density behind the shock is ~0.14. Synchrotron and Coulomb cooling dominate the losses of the electrons. The injected electron spectrum has a power law index -2.1, consistent with diffusive shock acceleration, and the number density scales with the thermal electron energy density. The total energy density of the relativistic electrons is, if extrapolated to gamma ~ 1, ~ 5x10^-4 of the thermal energy density. The free-free absorption required is consistent with previous calculations of the circumstellar temperature of SN 1993J, T_e ~ (2-10)x10^5 K. The relative importance of free-free absorption, Razin suppression, and the synchrotron self-absorption effect for other supernovae are briefly discussed. Guidelines for the modeling and interpretation of VLBI observations are given.Comment: accepted for Ap.

    There are no multiply-perfect Fibonacci numbers

    Get PDF
    Here, we show that no Fibonacci number (larger than 1) divides the sum of its divisors
    corecore