373 research outputs found

### A novel estimator of the polarization amplitude from normally distributed Stokes parameters

We propose a novel estimator of the polarization amplitude from a single
measurement of its normally distributed $(Q,U)$ Stokes components. Based on the
properties of the Rice distribution and dubbed 'MAS' (Modified ASymptotic), it
meets several desirable criteria:(i) its values lie in the whole positive
region; (ii) its distribution is continuous; (iii) it transforms smoothly with
the signal-to-noise ratio (SNR) from a Rayleigh-like shape to a Gaussian one;
(iv) it is unbiased and reaches its components' variance as soon as the SNR
exceeds 2; (v) it is analytic and can therefore be used on large data-sets. We
also revisit the construction of its associated confidence intervals and show
how the Feldman-Cousins prescription efficiently solves the issue of classical
intervals lying entirely in the unphysical negative domain. Such intervals can
be used to identify statistically significant polarized regions and conversely
build masks for polarization data. We then consider the case of a general
$[Q,U]$ covariance matrix and perform a generalization of the estimator that
preserves its asymptotic properties. We show that its bias does not depend on
the true polarization angle, and provide an analytic estimate of its variance.
The estimator value, together with its variance, provide a powerful
point-estimate of the true polarization amplitude that follows an unbiased
Gaussian distribution for a SNR as low as 2. These results can be applied to
the much more general case of transforming any normally distributed random
variable from Cartesian to polar coordinates.Comment: Accepted by MNRA

### Simulated CII observations for SPICA/SAFARI

We investigate the case of CII 158 micron observations for SPICA/SAFARI using
a three-dimensional magnetohydrodynamical (MHD) simulation of the diffuse
interstellar medium (ISM) and the Meudon PDR code. The MHD simulation consists
of two converging flows of warm gas (10,000 K) within a cubic box 50 pc in
length. The interplay of thermal instability, magnetic field and self-gravity
leads to the formation of cold, dense clumps within a warm, turbulent
interclump medium. We sample several clumps along a line of sight through the
simulated cube and use them as input density profiles in the Meudon PDR code.
This allows us to derive intensity predictions for the CII 158 micron line and
provide time estimates for the mapping of a given sky area.Comment: 4 pages, 5 figures, to appear in the proceedings of the workshop "The
Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins
of Planets and Galaxies" (July 2009, Oxford, United Kingdom

### SKA HI end2end simulation

The current status of the HI simulation efforts is presented, in which a self
consistent simulation path is described and basic equations to calculate array
sensitivities are given. There is a summary of the SKA Design Study (SKADS) sky
simulation and a method for implementing it into the array simulator is
presented. A short overview of HI sensitivity requirements is discussed and
expected results for a simulated HI survey are presented.Comment: 7 pages, 6 figues, need skads2009.cls file to late

### Polarization measurements analysis II. Best estimators of polarization fraction and angle

With the forthcoming release of high precision polarization measurements,
such as from the Planck satellite, it becomes critical to evaluate the
performance of estimators for the polarization fraction and angle. These two
physical quantities suffer from a well-known bias in the presence of
measurement noise, as has been described in part I of this series. In this
paper, part II of the series, we explore the extent to which various estimators
may correct the bias. Traditional frequentist estimators of the polarization
fraction are compared with two recent estimators: one inspired by a Bayesian
analysis and a second following an asymptotic method. We investigate the
sensitivity of these estimators to the asymmetry of the covariance matrix which
may vary over large datasets. We present for the first time a comparison among
polarization angle estimators, and evaluate the statistical bias on the angle
that appears when the covariance matrix exhibits effective ellipticity. We also
address the question of the accuracy of the polarization fraction and angle
uncertainty estimators. The methods linked to the credible intervals and to the
variance estimates are tested against the robust confidence interval method.
From this pool of estimators, we build recipes adapted to different use-cases:
build a mask, compute large maps, and deal with low S/N data. More generally,
we show that the traditional estimators suffer from discontinuous distributions
at low S/N, while the asymptotic and Bayesian methods do not. Attention is
given to the shape of the output distribution of the estimators, and is
compared with a Gaussian. In this regard, the new asymptotic method presents
the best performance, while the Bayesian output distribution is shown to be
strongly asymmetric with a sharp cut at low S/N.Finally, we present an
optimization of the estimator derived from the Bayesian analysis using adapted
priors

### Magnetic field morphology in nearby molecular clouds as revealed by starlight and submillimetre polarization

Within four nearby (d < 160 pc) molecular clouds, we statistically evaluate
the structure of the interstellar magnetic field, projected on the plane of the
sky and integrated along the line of sight, as inferred from the polarized
thermal emission of Galactic dust observed by Planck at 353 GHz and from the
optical and NIR polarization of background starlight. We compare the dispersion
of the field orientation directly in vicinities with an area equivalent to that
subtended by the Planck effective beam at 353 GHz (10') and using the
second-order structure functions of the field orientation angles. We find that
the average dispersion of the starlight-inferred field orientations within
10'-diameter vicinities is less than 20 deg, and that at these scales the mean
field orientation is on average within 5 deg of that inferred from the
submillimetre polarization observations in the considered regions. We also find
that the dispersion of starlight polarization orientations and the polarization
fractions within these vicinities are well reproduced by a Gaussian model of
the turbulent structure of the magnetic field, in agreement with the findings
reported by the Planck collaboration at scales greater than 10' and for
comparable column densities. At scales greater than 10', we find differences of
up to 14.7 deg between the second-order structure functions obtained from
starlight and submillimetre polarization observations in the same positions in
the plane of the sky, but comparison with a Gaussian model of the turbulent
structure of the magnetic field indicates that these differences are small and
are consistent with the difference in angular resolution between both
techniques.Comment: 15 pages, 10 figures, submitted to A&

### First detection of [N II] 205 micrometer absorption in interstellar gas

We present high resolution [NII] 205 micrometer ^3P_1-^3P_0 spectra obtained
with Herschel-HIFI towards a small sample of far-infrared bright star forming
regions in the Galactic plane: W31C (G10.6-0.4), W49N (G43.2-0.1), W51
(G49.5-0.4), and G34.3+0.1. All sources display an emission line profile
associated directly with the HII regions themselves. For the first time we also
detect absorption of the [NII] 205 micrometer line by extended low-density
foreground material towards W31C and W49N over a wide range of velocities. We
attribute this absorption to the warm ionised medium (WIM) and find
N(N^+)\approx 1.5x10^17 cm^-2 towards both sources. This is in agreement with
recent Herschel-HIFI observations of [CII] 158 micrometer, also observed in
absorption in the same sight-lines, if \approx7-10 % of all C^+ ions exist in
the WIM on average. Using an abundance ratio of [N]/[H] = 6.76x10^-5 in the gas
phase we find that the mean electron and proton volume densities are ~0.1-0.3
cm^-3 assuming a WIM volume filling fraction of 0.1-0.4 with a corresponding
line-of-sight filling fraction of 0.46-0.74. A low density and a high WIM
filling fraction are also supported by RADEX modelling of the [NII] 205
micrometer absorption and emission together with visible emission lines
attributed mainly to the WIM. The detection of the 205 micrometer line in
absorption emphasises the importance of a high spectral resolution, and also
offers a new tool for investigation of the WIM.Comment: 7 pages, 4 figures, accepted for publication in Astronomy &
Astrophysics, 11 June 201

### On the use of fractional Brownian motion simulations to determine the 3D statistical properties of interstellar gas

Based on fractional Brownian motion (fBm) simulations of 3D gas density and
velocity fields, we present a study of the statistical properties of
spectro-imagery observations (channel maps, integrated emission, and line
centroid velocity) in the case of an optically thin medium at various
temperatures. The power spectral index gamma_W of the integrated emission is
identified with that of the 3D density field (gamma_n) provided the medium's
depth is at least of the order of the largest transverse scale in the image,
and the power spectrum of the centroid velocity map is found to have the same
index gamma_C as that of the velocity field (gamma_v). Further tests with
non-fBm density and velocity fields show that this last result holds, and is
not modified either by the effects of density-velocity correlations. A
comparison is made with the theoretical predictions of Lazarian & Pogosyan
(2000).Comment: 28 pages, 14 figures, accepted for publication in ApJ. For preprint
with higher-resolution figures, see
http://www.cita.utoronto.ca/~mamd/miville_fbm2003.pd

### A Virtual Sky with Extragalactic HI and CO Lines for the SKA and ALMA

We present a sky simulation of the atomic HI emission line and the first ten
CO rotational emission lines of molecular gas in galaxies beyond the Milky Way.
The simulated sky field has a comoving diameter of 500/h Mpc, hence the actual
field-of-view depends on the (user-defined) maximal redshift zmax; e.g. for
zmax=10, the field of view yields ~4x4 sqdeg. For all galaxies, we estimate the
line fluxes, line profiles, and angular sizes of the HI and CO emission lines.
The galaxy sample is complete for galaxies with cold hydrogen masses above 10^8
Msun. This sky simulation builds on a semi-analytic model of the cosmic
evolution of galaxies in a Lambda-cold dark matter (LCDM) cosmology. The
evolving CDM-distribution was adopted from the Millennium Simulation, an N-body
CDM-simulation in a cubic box with a side length of 500/h Mpc. This side length
limits the coherence scale of our sky simulation: it is long enough to allow
the extraction of the baryon acoustic oscillations (BAOs) in the galaxy power
spectrum, yet the position and amplitude of the first acoustic peak will be
imperfectly defined. This sky simulation is a tangible aid to the design and
operation of future telescopes, such the SKA, the LMT, and ALMA. The results
presented in this paper have been restricted to a graphical representation of
the simulated sky and fundamental dN/dz-analyzes for peak flux density limited
and total flux limited surveys of HI and CO. A key prediction is that HI will
be harder to detect at redshifts z>2 than predicted by a no-evolution model.
The future verification or falsification of this prediction will allow us to
qualify the semi-analytic models.Comment: 16 pages, 9 figures, 1 tabl

- âŠ