69 research outputs found

    Berry phase jumps and giant nonreciprocity in Dirac quantum dots

    Get PDF
    We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B=0B=0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the BB-induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.Comment: 6 pages, 6 figure

    Energy-driven Drag at Charge Neutrality in Graphene

    Full text link
    Coulomb coupling between proximal layers in graphene heterostructures results in efficient energy transfer between the layers. We predict that, in the presence of correlated density inhomogeneities in the layers, vertical energy transfer has a strong impact on lateral charge transport. In particular, for Coulomb drag it dominates over the conventional momentum drag near zero doping. The dependence on doping and temperature, which is different for the two drag mechanisms, can be used to separate these mechanisms in experiment. We predict distinct features such as a peak at zero doping and a multiple sign reversal, which provide diagnostics for this new drag mechanism.Comment: 6 pgs, 3 fg

    Topological Bloch Bands in Graphene Superlattices

    Get PDF
    We outline an approach to endow a plain vanilla material with topological properties by creating topological bands in stacks of manifestly nontopological atomically thin materials. The approach is illustrated with a model system comprised of graphene stacked atop hexagonal-boron-nitride. In this case, the Berry curvature of the electron Bloch bands is highly sensitive to the stacking configuration. As a result, electron topology can be controlled by crystal axes alignment, granting a practical route to designer topological materials. Berry curvature manifests itself in transport via the valley Hall effect and long-range chargeless valley currents. The non-local electrical response mediated by such currents provides diagnostics for band topology

    Quantum Noise as an Entanglement Meter

    Full text link
    Entanglement entropy, which is a measure of quantum correlations between separate parts of a many-body system, has emerged recently as a fundamental quantity in broad areas of theoretical physics, from cosmology and field theory to condensed matter theory and quantum information. The universal appeal of the entanglement entropy concept is related, in part, to the fact that it is defined solely in terms of the many-body density matrix of the system, with no relation to any particular observables. However, for the same reason, it has not been clear how to access this quantity experimentally. Here we derive a universal relation between entanglement entropy and the fluctuations of current flowing through a quantum point contact (QPC) which opens a way to perform a direct measurement of entanglement entropy. In particular, by utilizing space-time duality of 1d systems, we relate electric noise generated by opening and closing the QPC periodically in time with the seminal S = 1/3 log L prediction of conformal field theory

    Resonant Tunneling and Intrinsic Bistability in Twisted Graphene Structures

    Get PDF
    We predict that vertical transport in heterostructures formed by twisted graphene layers can exhibit a unique bistability mechanism. Intrinsically bistable II-VV characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and drain and the middle layer floating. Under bias, the middle layer can be either resonant or non-resonant with the source and drain layers. The bistability is controlled by geometric device parameters easily tunable in experiments. The nanoscale architecture can enable uniquely fast switching times.Comment: 7 pages, 4 figure

    Shockley-Ramo theorem and long-range photocurrent response in gapless materials

    Get PDF
    Scanning photocurrent maps of gapless materials, such as graphene, often exhibit complex patterns of hot spots positioned far from current-collecting contacts. We develop a general framework that helps to explain the unusual features of the observed patterns, such as the directional effect and the global character of photoresponse. We show that such a response is captured by a simple Shockley-Ramo-type approach. We examine specific examples and show that the photoresponse patterns can serve as a powerful tool to extract information about symmetry breaking, inhomogeneity, chirality, and other local characteristics of the system.Comment: 7 pgs, 3 fg

    Energy flows in graphene: hot carrier dynamics and cooling

    Get PDF
    Long lifetimes of hot carriers can lead to qualitatively new types of responses in materials. The magnitude and time scales for these responses reflect the mechanisms governing energy flows. We examine the microscopics of two processes which are key for energy transport, focusing on the unusual behavior arising due to graphene's unique combination of material properties. One is hot carrier generation in its photoexcitation dynamics, where hot carriers multiply through an Auger type carrier–carrier scattering cascade. The hot-carrier generation manifests itself through elevated electronic temperatures which can be accessed in a variety of ways, in particular optical conductivity measurements. Another process of high interest is electron-lattice cooling. We survey different cooling pathways and discuss the cooling bottleneck arising for the momentum-conserving electron–phonon scattering pathway. We show how this bottleneck can be relieved by higher-order collisions—supercollisions—and examine the variety of supercollision processes that can occur in graphene

    Topological Valley Currents in Gapped Dirac Materials

    Get PDF
    Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent or when they are localized due to edge roughness. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. Dissipationless currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The under-gap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.Comment: 5pgs 3fg
    • …
    corecore