1,560 research outputs found

    SUSY transformation of the Green function and a trace formula

    Full text link
    An integral relation is established between the Green functions corresponding to two Hamiltonians which are supersymmetric (SUSY) partners and in general may possess both discrete and continuous spectra. It is shown that when the continuous spectrum is present the trace of the difference of the Green functions for SUSY partners is a finite quantity which may or may not be equal to zero despite the divergence of the traces of each Green function. Our findings are illustrated by using the free particle example considered both on the whole real line and on a half line

    Inverse eigenvalue problem for discrete three-diagonal Sturm-Liouville operator and the continuum limit

    Full text link
    In present article the self-contained derivation of eigenvalue inverse problem results is given by using a discrete approximation of the Schroedinger operator on a bounded interval as a finite three-diagonal symmetric Jacobi matrix. This derivation is more correct in comparison with previous works which used only single-diagonal matrix. It is demonstrated that inverse problem procedure is nothing else than well known Gram-Schmidt orthonormalization in Euclidean space for special vectors numbered by the space coordinate index. All the results of usual inverse problem with continuous coordinate are reobtained by employing a limiting procedure, including the Goursat problem -- equation in partial derivatives for the solutions of the inversion integral equation.Comment: 19 pages There were made some additions (and reformulations) to the text making the derivation of the results more precise and understandabl

    Convergence of expansions in Schr\"odinger and Dirac eigenfunctions, with an application to the R-matrix theory

    Full text link
    Expansion of a wave function in a basis of eigenfunctions of a differential eigenvalue problem lies at the heart of the R-matrix methods for both the Schr\"odinger and Dirac particles. A central issue that should be carefully analyzed when functional series are applied is their convergence. In the present paper, we study the properties of the eigenfunction expansions appearing in nonrelativistic and relativistic RR-matrix theories. In particular, we confirm the findings of Rosenthal [J. Phys. G: Nucl. Phys. 13, 491 (1987)] and Szmytkowski and Hinze [J. Phys. B: At. Mol. Opt. Phys. 29, 761 (1996); J. Phys. A: Math. Gen. 29, 6125 (1996)] that in the most popular formulation of the R-matrix theory for Dirac particles, the functional series fails to converge to a claimed limit.Comment: Revised version, accepted for publication in Journal of Mathematical Physics, 21 pages, 1 figur

    Exact propagators for SUSY partners

    Full text link
    Pairs of SUSY partner Hamiltonians are studied which are interrelated by usual (linear) or polynomial supersymmetry. Assuming the model of one of the Hamiltonians as exactly solvable with known propagator, expressions for propagators of partner models are derived. The corresponding general results are applied to "a particle in a box", the Harmonic oscillator and a free particle (i.e. to transparent potentials).Comment: 31 page

    The inverse scattering problem at fixed energy based on the Marchenko equation for an auxiliary Sturm-Liouville operator

    Full text link
    A new approach is proposed to the solution of the quantum mechanical inverse scattering problem at fixed energy. The method relates the fixed energy phase shifts to those arising in an auxiliary Sturm-Liouville problem via the interpolation theory of the Weyl-Titchmarsh m-function. Then a Marchenko equation is solved to obtain the potential.Comment: 6 pages, 8 eps figure

    Stability of the inverse resonance problem on the line

    Full text link
    In the absence of a half-bound state, a compactly supported potential of a Schr\"odinger operator on the line is determined up to a translation by the zeros and poles of the meropmorphically continued left (or right) reflection coefficient. The poles are the eigenvalues and resonances, while the zeros also are physically relevant. We prove that all compactly supported potentials (without half-bound states) that have reflection coefficients whose zeros and poles are \eps-close in some disk centered at the origin are also close (in a suitable sense). In addition, we prove stability of small perturbations of the zero potential (which has a half-bound state) from only the eigenvalues and resonances of the perturbation.Comment: 21 page

    Effects of Noise in a Cortical Neural Model

    Full text link
    Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made long-term observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current models in many features. In this paper we generalize the EI cortical model introduced in a previous paper (S.Scarpetta et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing effects of noise on the spontaneous activity of the nonlinear system, in order to account for the experimental results of Segev et al.. Analytically we can distinguish different regimes of activity, depending from the model parameters. Using analytical results as a guide line, we perform simulations of the nonlinear stochastic model in two different regimes, B and C. The Power Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI) distributions are computed, and compared with experimental results. In regime B the network shows stochastic resonance phenomena and noise induces aperiodic collective synchronous oscillations that mimic experimental observations at 0.5 mM Ca concentration. In regime C the model shows spontaneous synchronous periodic activity that mimic activity observed at 1 mM Ca concentration and the PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function effects) the PSD shows a broad band peak at low frequency. This feature, observed experimentally, does not find explanation in the previous models. Besides we identify parametric changes (namely increase of noise or decreasing of excitatory connections) that reproduces the fading of periodicity found experimentally at long times, and we identify a way to discriminate between those two possible effects measuring experimentally the low frequency PSD.Comment: 25 pages, 10 figures, to appear in Phys. Rev.

    Small-Energy Analysis for the Selfadjoint Matrix Schroedinger Operator on the Half Line

    Full text link
    The matrix Schroedinger equation with a selfadjoint matrix potential is considered on the half line with the most general selfadjoint boundary condition at the origin. When the matrix potential is integrable and has a first moment, it is shown that the corresponding scattering matrix is continuous at zero energy. An explicit formula is provided for the scattering matrix at zero energy. The small-energy asymptotics are established also for the corresponding Jost matrix, its inverse, and various other quantities relevant to the corresponding direct and inverse scattering problems.Comment: This published version has been edited to improve the presentation of the result
    • …
    corecore