26,594 research outputs found

    Properties of developmental gene regulatory networks

    Get PDF
    The modular components, or subcircuits, of developmental gene regulatory networks (GRNs) execute specific developmental functions, such as the specification of cell identity. We survey examples of such subcircuits and relate their structures to corresponding developmental functions. These relations transcend organisms and genes, as illustrated by the similar structures of the subcircuits controlling the specification of the mesectoderm in the Drosophila embryo and the endomesoderm in the sea urchin, even though the respective subcircuits are composed of nonorthologous regulatory genes

    A study of an electric field measuring instrument

    Get PDF
    Cesium ion beam electric field measuring instrument

    A study of charged particle motion in magnetic radiation shielding fields Final technical report

    Get PDF
    Charged particle motion in magnetic radiation shielding field

    Further industrial tests of ceramic thermal barrier coatings

    Get PDF
    The NASA Lewis Research Center made technical assistance arrangements (contracts) with several commercial organizations under which Lewis designed plasma-sprayed thermal-barrier coatings (TBC) for their products. Lewis was then furnished with the test conditions and evaluations of coating usefulness. The coating systems were developed and sprayed at Lewis. All of the systems incorporated a two-layer, ceramic-bond coating concept. Coating thickness and chemical composition were varied to fit three applications: the leading edges of first-stage turbine vanes for an advanced gas turbine engine; the flame impingement surfaces of a combustor transition section; and diesel engine valves and head surfaces. The TBC incorporated yytria-stabilized zirconia, which lowered metal temperatures, protected metal parts, and increased metal part life. In some cases metal burning, melting, and warping were eliminated. Additional benefits were realized from these endeavors: hands-on experience with thermal-barrier coatings was provided to industry; the success of these endeavors encourages these and other organizations to accelerate the implementation of TBC technology

    Finite element analysis of structures in the plastic range

    Get PDF
    Finite element analysis of structures in plastic rang

    Synthesis of polyethers of hexafluorobenzene and hexafluoropentanediol

    Get PDF
    Two new polyethers, poly /hexafluoropentamethylene tetrafluoro-p-phenylene ether/ and a completely hydroxyl-terminated polyether, is prepared by reactions of hexafluorobenzene with hexafluoropentanediol. The polyethers can be prepared as low molecular weight oils, as intermediate molecular weight waxes, or as high molecular weight elastomers

    Nonlinear behavior of shells of revolution under cyclic loading

    Get PDF
    A large deflection elastic-plastic analysis is presented, applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed. The monotonic results are compared with other theoretical solutions

    An exactly solvable model for driven dissipative systems

    Full text link
    We introduce a solvable stochastic model inspired by granular gases for driven dissipative systems. We characterize far from equilibrium steady states of such systems through the non-Boltzmann energy distribution and compare different measures of effective temperatures. As an example we demonstrate that fluctuation-dissipation relations hold, however with an effective temperature differing from the effective temperature defined from the average energy.Comment: Some further clarifications. No changes in results or conclusion

    High Frequency Scattering from Arbitrarily Oriented Dielectric Disks

    Get PDF
    Calculations have been made of electromagnetic wave scattering from dielectric disks of arbitrary shape and orientation in the high frequency (physical optics) regime. The solution is obtained by approximating the fields inside the disk with the fields induced inside an identically oriented slab (i.e. infinite parallel planes) with the same thickness and dielectric properties. The fields inside the disk excite conduction and polarization currents which are used to calculate the scattered fields by integrating the radiation from these sources over the volume of the disk. This computation has been executed for observers in the far field of the disk in the case of disks with arbitrary orientation and for arbitrary polarization of the incident radiation. The results have been expressed in the form of a dyadic scattering amplitude for the disk. The results apply to disks whose diameter is large compared to wavelength and whose thickness is small compared to diameter, but the thickness need not be small compared to wavelength. Examples of the dependence of the scattering amplitude on frequency, dielectric properties of the disk and disk orientation are presented for disks of circular cross section

    The structure of lightning flashes HF-UHF: 12 September 1975, Atlanta, Georgia

    Get PDF
    Simultaneous measurement of sferics at 3, 30, 139, and 295 MHz were made during thunderstorms. Wideband electronics and an analogue tape recorder continuously recorded the radiation from lightning with about 300 kHz of bandwidth. The data were obtained during the passage of a cold front. Flashing rate, burst rate and the structure of individual flashes were recorded. The record of a typical flash begins with a sudden burst of closely spaced pulses whose temporal structure is typical of the stepped leader, and ends in a large pulse suggestive of a first return stroke. The remainder of the flash consists of a sequence of pulses of varying amplitude separated by quiet periods of the order of milliseconds. The shape of these pulses and the temporal structure suggest that the first few large pulses are return strokes. Other discharges begin with widely spaced discrete pulses and resemble the preceding discharge less the leader and return stroke phase. The radiation exhibits a similar structure, at each of the frequencies monitored
    • …
    corecore