12,691 research outputs found
The Metallicity and Reddening of Stars in the Inner Galactic Bulge
We present a preliminary analysis of K, J-K color magnitude diagrams (CMDs)
for 7 different positions on or close to the minor axis of the Milky Way at
Galactic latitudes between +0.1^\circ and -2.8^\circ. From the slopes of the
(linear) giant branches in these CMDs we derive a dependence of on
latitude for b between -0.8^\circ and -2.8^\circ of -0.085 \pm 0.033
dex/degree. When combined with the data from Tiede et al. we find for
-0.8^\circ \leq b \leq -10.3^\circ the slope in is -0.064 \pm 0.012
dex/degree. An extrapolation to the Galactic Center predicts [Fe/H] = +0.034
\pm 0.053 dex. We also derive average values for the extinction in the K band
(A_K) of between 2.15 and 0.27 for the inner bulge fields corresponding to
average values of E(J-K) of between 3.46 and 0.44. There is a well defined
linear relation between the average extinction for a field and the star-to-star
scatter in the extinction for the stars within each field. This result suggests
that the typical apparent angular scale size for an absorbing cloud is small
compared with the field size (90\arcsec on a side). Finally, from an
examination of the luminosity function of bright giants in each field we
conclude that the young component of the stellar population observed near the
Galactic center declines in density much more quickly than the overall bulge
population and is undetectable beyond 1^\circ from the Galactic center.Comment: accepted for publication in Astron. Jour. Compressed file contains
the text, 9 figures, and 6 tables prepared with AAS Latex macros v. 4.
On the General Ericksen-Leslie System: Parodi's Relation, Well-posedness and Stability
In this paper we investigate the role of Parodi's relation in the
well-posedness and stability of the general Ericksen-Leslie system modeling
nematic liquid crystal flows. First, we give a formal physical derivation of
the Ericksen-Leslie system through an appropriate energy variational approach
under Parodi's relation, in which we can distinguish the
conservative/dissipative parts of the induced elastic stress. Next, we prove
global well-posedness and long-time behavior of the Ericksen-Leslie system
under the assumption that the viscosity is sufficiently large. Finally,
under Parodi's relation, we show the global well-posedness and Lyapunov
stability for the Ericksen-Leslie system near local energy minimizers. The
connection between Parodi's relation and linear stability of the
Ericksen-Leslie system is also discussed
Recommended from our members
ISSLS PRIZE IN BIOENGINEERING SCIENCE 2019: biomechanical changes in dynamic sagittal balance and lower limb compensatory strategies following realignment surgery in adult spinal deformity patients.
Study designA longitudinal cohort study.ObjectiveTo define a set of objective biomechanical metrics that are representative of adult spinal deformity (ASD) post-surgical outcomes and that may forecast post-surgical mechanical complications. Current outcomes for ASD surgical planning and post-surgical assessment are limited to static radiographic alignment and patient-reported questionnaires. Little is known about the compensatory biomechanical strategies for stabilizing sagittal balance during functional movements in ASD patients.MethodsWe collected in-clinic motion data from 15 ASD patients and 10 controls during an unassisted sit-to-stand (STS) functional maneuver. Joint motions were measured using noninvasive 3D depth mapping sensor technology. Mathematical methods were used to attain high-fidelity joint-position tracking for biomechanical modeling. This approach provided reliable measurements for biomechanical behaviors at the spine, hip, and knee. These included peak sagittal vertical axis (SVA) over the course of the STS, as well as forces and muscular moments at various joints. We compared changes in dynamic sagittal balance (DSB) metrics between pre- and post-surgery and then separately compared pre- and post-surgical data to controls.ResultsStandard radiographic and patient-reported outcomes significantly improved following realignment surgery. From the DSB biomechanical metrics, peak SVA and biomechanical loads and muscular forces on the lower lumbar spine significantly reduced following surgery (- 19 to - 30%, all p < 0.05). In addition, as SVA improved, hip moments decreased (- 28 to - 65%, all p < 0.05) and knee moments increased (+ 7 to + 28%, p < 0.05), indicating changes in lower limb compensatory strategies. After surgery, DSB data approached values from the controls, with some post-surgical metrics becoming statistically equivalent to controls.ConclusionsLongitudinal changes in DSB following successful multi-level spinal realignment indicate reduced forces on the lower lumbar spine along with altered lower limb dynamics matching that of controls. Inadequate improvement in DSB may indicate increased risk of post-surgical mechanical failure. These slides can be retrieved under Electronic Supplementary Material
Iron Age and Anglo-Saxon genomes from East England reveal British migration history
British population history has been shaped by a series of immigrations, including the early Anglo-Saxon migrations after 400 CE. It remains an open question how these events affected the genetic composition of the current British population. Here, we present whole-genome sequences from 10 individuals excavated close to Cambridge in the East of England, ranging from the late Iron Age to the middle Anglo-Saxon period. By analysing shared rare variants with hundreds of modern samples from Britain and Europe, we estimate that on average the contemporary East English population derives 38% of its ancestry from Anglo-Saxon migrations. We gain further insight with a new method, rarecoal, which infers population history and identifies fine-scale genetic ancestry from rare variants. Using rarecoal we find that the Anglo-Saxon samples are closely related to modern Dutch and Danish populations, while the Iron Age samples share ancestors with multiple Northern European populations including Britain
Poisson-Bracket Approach to the Dynamics of Nematic Liquid Crystals. The Role of Spin Angular Momentum
Nematic liquid crystals are well modeled as a fluid of rigid rods. Starting
from this model, we use a Poisson-bracket formalism to derive the equations
governing the dynamics of nematic liquid crystals. We treat the spin angular
momentum density arising from the rotation of constituent molecules about their
centers of mass as an independent field and derive equations for it, the mass
density, the momentum density, and the nematic director. Our equations reduce
to the original Leslie-Ericksen equations, including the inertial director term
that is neglected in the hydrodynamic limit, only when the moment of inertia
for angular momentum parallel to the director vanishes and when a dissipative
coefficient favoring locking of the angular frequencies of director rotation
and spin angular momentum diverges. Our equations reduce to the equations of
nematohydrodynamics in the hydrodynamic limit but with dissipative coefficients
that depend on the coefficient that must diverge to produce the Leslie-Ericksen
equations.Comment: 10 pages, to be published in Phys. Rev. E 72(5
Lehmann rotation of cholesteric droplets subjected to a temperature gradient: role of the concentration of chiral molecules
International audienceWe present a systematic study of the Lehmann rotation of cholesteric droplets subjected to a temperature gradient when the concentration of chiral molecules is changed. The liquid crystal chosen is an eutectic mixture of 8CB and 8OCB doped with a small amount of the chiral molecule R811. The angular velocity of the droplets strongly depend on their size and on the concentration of chiral molecules. The Lehmann coefficient is estimated by using three different methods. Our results are consistent with a Lehmann coefficient proportional to the concentration of chiral molecules. We additionally show the existence of a critical size of the droplets below which they change texture and stop rotating
Muon-Spin Rotation Measurements of an Unusual Vortex-Glass Phase in the Layered Superconductor Bi2.15Sr1.85CaCu2O8+δ
Muon-spin rotation measurements, performed on the mixed state of the classic anisotropic superconductor Bi2.15Sr1.85CaCu2O8+δ, obtain quantities directly related to two- and three-body correlations of vortices in space. A novel phase diagram emerges from such local probe measurements of the bulk, revealing an unusual glassy state at intermediate fields which appears to freeze continuously from the equilibrium vortex liquid but differs both from the lattice and the conventional high-field vortex glass state in its structure.Publisher PDFPeer reviewe
Modeling and Simulation Techniques for the NASA SLS Service Module Panel Separation Event; from Loosely-Coupled Euler to Fully-Coupled 6-DOF, Time-Accurate, Navier-Stokes Methodologies
An aerodynamic database has been generated for use by the Orion Multi-Purpose Crew Vehicle (MPCV) Program to analyze Service Module (SM) panel jettison from the NASA SLS vehicle. The database is a combination of CFD data for the panel aerodynamic coefficients, and MATLAB code written to query the CFD data. The Cart3D inviscid CFD flow solver was used to generate the panel aerodynamic coefficients for static panel orientations and free stream conditions that can occur during the jettison event. The MATLAB code performs the multivariate interpolation to obtain aerodynamic coefficients. The MATLAB code uses input for SM panel parameters and returns the SM panel aerodynamic force and moment coefficients for use with a Six-Degree-of-Freedom (6-DOF) motion solver to model the jettison event. This paper examines the accuracy of the sequential-static database approach by modeling the panel jettison event with a fully-coupled, time-dependent, viscous, moving-body CFD simulation. The fully-coupled simulation is obtained using the Loci/Chem unstructured Navier-Stokes CFD solver. The results show that the fully-coupled approach agrees well with the loosely-coupled database/6-DOF approach, indicating that unsteady effects are minimal for the panel jettison event. These results suggest that the database/6-DOF approach is sufficient. In addition, this paper presents the development of an uncertainty model for use in Monte Carlo analysis of the panel jettison event. Here viscous CFD simulations are obtained with Loci/Chem and compared to the inviscid CFD forces and moments. An uncertainty model based on model-form error and numerical error is presented
Impaired Competence for Pretense in Children with Autism: Exploring Potential Cognitive Predictors.
Lack of pretense in children with autism has been explained by a number of theoretical explanations, including impaired mentalising, impaired response inhibition, and weak central coherence. This study aimed to empirically test each of these theories. Children with autism (n=60) were significantly impaired relative to controls (n=65) when interpreting pretense, thereby supporting a competence deficit hypothesis. They also showed impaired mentalising and response inhibition, but superior local processing indicating weak central coherence. Regression analyses revealed that mentalising significantly and independently predicted pretense. The results are interpreted as supporting the impaired mentalising theory and evidence against competing theories invoking impaired response inhibition or a local processing bias. The results of this study have important implications for treatment and intervention
Implicit and Explicit Stigma of Mental Illness: Attitudes in an Evidence-Based Practice
The extent to which explicit and implicit stigma are endorsed by mental health practitioners using evidence-based practices is unknown. The purposes of the current study were to a) examine implicit and explicit biases among Assertive Community Treatment (ACT) staff and b) explore the extent to which biases predicted the use of treatment control mechanisms. Participants were 154 ACT staff from nine states. Overall, the participants exhibited positive explicit and implicit attitudes toward people with mental illness. When modeled using latent factors, greater implicit, but not explicit, bias significantly predicted greater endorsement of restrictive or controlling clinical interventions. Thus, despite overall positive attitudes toward those with mental illness for the sample as a whole, individual differences in provider stigma were related to clinical care. Mental health professionals, and specifically ACT clinicians, should be educated on types of bias and ways in which biases influence clinical interventions
- …
