181 research outputs found

    Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology

    Get PDF
    Abstract Background In many protein-protein interaction (PPI) networks, densely connected hub proteins are more likely to be essential proteins. This is referred to as the "centrality-lethality rule", which indicates that the topological placement of a protein in PPI network is connected with its biological essentiality. Though such connections are observed in many PPI networks, the underlying topological properties for these connections are not yet clearly understood. Some suggested putative connections are the involvement of essential proteins in the maintenance of overall network connections, or that they play a role in essential protein clusters. In this work, we have attempted to examine the placement of essential proteins and the network topology from a different perspective by determining the correlation of protein essentiality and reverse nearest neighbor topology (RNN). Results The RNN topology is a weighted directed graph derived from PPI network, and it is a natural representation of the topological dependences between proteins within the PPI network. Similar to the original PPI network, we have observed that essential proteins tend to be hub proteins in RNN topology. Additionally, essential genes are enriched in clusters containing many hub proteins in RNN topology (RNN protein clusters). Based on these two properties of essential genes in RNN topology, we have proposed a new measure; the RNN cluster centrality. Results from a variety of PPI networks demonstrate that RNN cluster centrality outperforms other centrality measures with regard to the proportion of selected proteins that are essential proteins. We also investigated the biological importance of RNN clusters. Conclusions This study reveals that RNN cluster centrality provides the best correlation of protein essentiality and placement of proteins in PPI network. Additionally, merged RNN clusters were found to be topologically important in that essential proteins are significantly enriched in RNN clusters, and biologically important because they play an important role in many Gene Ontology (GO) processes.http://deepblue.lib.umich.edu/bitstream/2027.42/78257/1/1471-2105-11-505.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78257/2/1471-2105-11-505-S1.DOChttp://deepblue.lib.umich.edu/bitstream/2027.42/78257/3/1471-2105-11-505.pdfPeer Reviewe

    BOSS-LDG: A Novel Computational Framework that Brings Together Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery

    Get PDF
    We present a novel computational framework that connects Blue Waters, the NSF-supported, leadership-class supercomputer operated by NCSA, to the Laser Interferometer Gravitational-Wave Observatory (LIGO) Data Grid via Open Science Grid technology. To enable this computational infrastructure, we configured, for the first time, a LIGO Data Grid Tier-1 Center that can submit heterogeneous LIGO workflows using Open Science Grid facilities. In order to enable a seamless connection between the LIGO Data Grid and Blue Waters via Open Science Grid, we utilize Shifter to containerize LIGO's workflow software. This work represents the first time Open Science Grid, Shifter, and Blue Waters are unified to tackle a scientific problem and, in particular, it is the first time a framework of this nature is used in the context of large scale gravitational wave data analysis. This new framework has been used in the last several weeks of LIGO's second discovery campaign to run the most computationally demanding gravitational wave search workflows on Blue Waters, and accelerate discovery in the emergent field of gravitational wave astrophysics. We discuss the implications of this novel framework for a wider ecosystem of Higher Performance Computing users.Comment: 10 pages, 10 figures. Accepted as a Full Research Paper to the 13th IEEE International Conference on eScienc

    Analysis of the Relationships among Longest Common Subsequences, Shortest Common Supersequences and Patterns and its application on Pattern Discovery in Biological Sequences

    Full text link
    For a set of mulitple sequences, their patterns,Longest Common Subsequences (LCS) and Shortest Common Supersequences (SCS) represent different aspects of these sequences profile, and they can all be used for biological sequence comparisons and analysis. Revealing the relationship between the patterns and LCS,SCS might provide us with a deeper view of the patterns of biological sequences, in turn leading to better understanding of them. However, There is no careful examinaton about the relationship between patterns, LCS and SCS. In this paper, we have analyzed their relation, and given some lemmas. Based on their relations, a set of algorithms called the PALS (PAtterns by Lcs and Scs) algorithms are propsoed to discover patterns in a set of biological sequences. These algorithms first generate the results for LCS and SCS of sequences by heuristic, and consequently derive patterns from these results. Experiments show that the PALS algorithms perform well (both in efficiency and in accuracy) on a variety of sequences. The PALS approach also provides us with a solution for transforming between the heuristic results of SCS and LCS.Comment: Extended version of paper presented in IEEE BIBE 2006 submitted to journal for revie

    A post-processing method for optimizing synthesis strategy for oligonucleotide microarrays

    Get PDF
    The broad applicability of gene expression profiling to genomic analyses has generated huge demand for mass production of microarrays and hence for improving the cost effectiveness of microarray fabrication. We developed a post-processing method for deriving a good synthesis strategy. In this paper, we assessed all the known efficient methods and our post-processing method for reducing the number of synthesis cycles for manufacturing a DNA-chip of a given set of oligos. Our experimental results on both simulated and 52 real datasets show that no single method consistently gives the best synthesis strategy, and post-processing an existing strategy is necessary as it often reduces the number of synthesis cycles further

    Jerantinine A induces tumor-specific cell death through modulation of splicing factor 3b subunit 1 (SF3B1)

    Get PDF
    Precursor mRNA (pre-mRNA) splicing is catalyzed by a large ribonucleoprotein complex known as the spliceosome. Numerous studies have indicated that aberrant splicing patterns or mutations in spliceosome components, including the splicing factor 3b subunit 1 (SF3B1), are associated with hallmark cancer phenotypes. This has led to the identification and development of small molecules with spliceosome-modulating activity as potential anticancer agents. Jerantinine A (JA) is a novel indole alkaloid which displays potent anti-proliferative activities against human cancer cell lines by inhibiting tubulin polymerization and inducing G2/M cell cycle arrest. Using a combined pooled-genome wide shRNA library screen and global proteomic profiling, we showed that JA targets the spliceosome by up-regulating SF3B1 and SF3B3 protein in breast cancer cells. Notably, JA induced significant tumor-specific cell death and a significant increase in unspliced pre-mRNAs. In contrast, depletion of endogenous SF3B1 abrogated the apoptotic effects, but not the G2/M cell cycle arrest induced by JA. Further analyses showed that JA stabilizes endogenous SF3B1 protein in breast cancer cells and induced dissociation of the protein from the nucleosome complex. Together, these results demonstrate that JA exerts its antitumor activity by targeting SF3B1 and SF3B3 in addition to its reported targeting of tubulin polymerization

    Container solutions for HPC Systems: A Case Study of Using Shifter on Blue Waters

    Full text link
    Software container solutions have revolutionized application development approaches by enabling lightweight platform abstractions within the so-called "containers." Several solutions are being actively developed in attempts to bring the benefits of containers to high-performance computing systems with their stringent security demands on the one hand and fundamental resource sharing requirements on the other. In this paper, we discuss the benefits and short-comings of such solutions when deployed on real HPC systems and applied to production scientific applications.We highlight use cases that are either enabled by or significantly benefit from such solutions. We discuss the efforts by HPC system administrators and support staff to support users of these type of workloads on HPC systems not initially designed with these workloads in mind focusing on NCSA's Blue Waters system.Comment: 8 pages, 7 figures, in PEARC '18: Proceedings of Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    MCL-CAw: A refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure

    Get PDF
    Abstract Background The reconstruction of protein complexes from the physical interactome of organisms serves as a building block towards understanding the higher level organization of the cell. Over the past few years, several independent high-throughput experiments have helped to catalogue enormous amount of physical protein interaction data from organisms such as yeast. However, these individual datasets show lack of correlation with each other and also contain substantial number of false positives (noise). Over these years, several affinity scoring schemes have also been devised to improve the qualities of these datasets. Therefore, the challenge now is to detect meaningful as well as novel complexes from protein interaction (PPI) networks derived by combining datasets from multiple sources and by making use of these affinity scoring schemes. In the attempt towards tackling this challenge, the Markov Clustering algorithm (MCL) has proved to be a popular and reasonably successful method, mainly due to its scalability, robustness, and ability to work on scored (weighted) networks. However, MCL produces many noisy clusters, which either do not match known complexes or have additional proteins that reduce the accuracies of correctly predicted complexes. Results Inspired by recent experimental observations by Gavin and colleagues on the modularity structure in yeast complexes and the distinctive properties of "core" and "attachment" proteins, we develop a core-attachment based refinement method coupled to MCL for reconstruction of yeast complexes from scored (weighted) PPI networks. We combine physical interactions from two recent "pull-down" experiments to generate an unscored PPI network. We then score this network using available affinity scoring schemes to generate multiple scored PPI networks. The evaluation of our method (called MCL-CAw) on these networks shows that: (i) MCL-CAw derives larger number of yeast complexes and with better accuracies than MCL, particularly in the presence of natural noise; (ii) Affinity scoring can effectively reduce the impact of noise on MCL-CAw and thereby improve the quality (precision and recall) of its predicted complexes; (iii) MCL-CAw responds well to most available scoring schemes. We discuss several instances where MCL-CAw was successful in deriving meaningful complexes, and where it missed a few proteins or whole complexes due to affinity scoring of the networks. We compare MCL-CAw with several recent complex detection algorithms on unscored and scored networks, and assess the relative performance of the algorithms on these networks. Further, we study the impact of augmenting physical datasets with computationally inferred interactions for complex detection. Finally, we analyse the essentiality of proteins within predicted complexes to understand a possible correlation between protein essentiality and their ability to form complexes. Conclusions We demonstrate that core-attachment based refinement in MCL-CAw improves the predictions of MCL on yeast PPI networks. We show that affinity scoring improves the performance of MCL-CAw.http://deepblue.lib.umich.edu/bitstream/2027.42/78256/1/1471-2105-11-504.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/2/1471-2105-11-504-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/3/1471-2105-11-504-S2.ZIPhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/4/1471-2105-11-504.pdfPeer Reviewe
    corecore