57 research outputs found

    The nature and strength of inter-layer binding in graphite

    Full text link
    We computed the inter-layer bonding properties of graphite using an ab-initio many body theory. We carried out variational and diffusion quantum Monte Carlo calculations and found an equilibrium inter-layer binding energy in good agreement with most recent experiments. We also analyzed the behavior of the total energy as a function of interlayer separation at large distances comparing the results with the predictions of the random phase approximation.Comment: 5 pages; to appear in Phys. Rev. Let

    Finite compressibility in the low-doping region of the two-dimensional t−Jt{-}J model

    Full text link
    We revisit the important issue of charge fluctuations in the two-dimensional t−Jt{-}J model by using an improved variational method based on a wave function that contains both the antiferromagnetic and the d-wave superconducting order parameters. In particular, we generalize the wave function introduced some time ago by J.P. Bouchaud, A. Georges, and C. Lhuillier [J. de Physique {\bf 49}, 553 (1988)] by considering also a {\it long-range} spin-spin Jastrow factor, in order to correctly reproduce the small-qq behavior of the spin fluctuations. We mainly focus our attention on the physically relevant region J/t∼0.4J/t \sim 0.4 and find that, contrary to previous variational ansatz, this state is stable against phase separation for small hole doping. Moreover, by performing projection Monte Carlo methods based on the so-called fixed-node approach, we obtain a clear evidence that the t−Jt{-}J model does not phase separate for J/t≲0.7J/t \lesssim 0.7 and that the compressibility remains finite close to the antiferromagnetic insulating state.Comment: 10 page

    Theoretical constraints for the magnetic-dimer transition in two-dimensional spin models

    Full text link
    From general arguments, that are valid for spin models with sufficiently short-range interactions, we derive strong constraints on the excitation spectrum across a continuous phase transition at zero temperature between a magnetic and a dimerized phase, that breaks the translational symmetry. From the different symmetries of the two phases, it is possible to predict, at the quantum critical point, a branch of gapless excitations, not described by standard semi-classical approaches. By using these arguments, supported by intensive numerical calculations, we obtain a rather convincing evidence in favor of a first-order transition from the ferromagnetic to the dimerized phase in the two-dimensional spin-half model with four-spin ring-exchange interaction, recently introduced by A.W. Sandvik et al. [Phys. Rev. Lett. 89, 247201 (2002)].Comment: 7 pages and 5 figure

    Ab initio investigation of the melting line of nitrogen at high pressure

    Full text link
    Understanding the behavior of molecular systems under pressure is a fundamental problem in condensed matter physics. In the case of nitrogen, the determination of the phase diagram and in particular of the melting line, are largely open problems. Two independent experiments have reported the presence of a maximum in the nitrogen melting curve, below 90 GPa, however the position and the interpretation of the origin of such maximum differ. By means of ab initio molecular dynamics simulations based on density functional theory and thermodynamic integration techniques, we have determined the phase diagram of nitrogen in the range between 20 and 100 GPa. We find a maximum in the melting line, related to a transformation in the liquid, from molecular N_2 to polymeric nitrogen accompanied by an insulator-to-metal transition

    Ab-initio calculations for the beta-tin diamond transition in Silicon: comparing theories with experiments

    Full text link
    We investigate the pressure-induced metal-insulator transition from diamond to beta-tin in bulk Silicon, using quantum Monte Carlo (QMC) and density functional theory (DFT) approaches. We show that it is possible to efficiently describe many-body effects, using a variational wave function with an optimized Jastrow factor and a Slater determinant. Variational results are obtained with a small computational cost and are further improved by performing diffusion Monte Carlo calculations and an explicit optimization of molecular orbitals in the determinant. Finite temperature corrections and zero point motion effects are included by calculating phonon dispersions in both phases at the DFT level. Our results indicate that the theoretical QMC (DFT) transition pressure is significantly larger (smaller) than the accepted experimental value. We discuss the limitation of DFT approaches due to the choice of the exchange and correlation functionals and the difficulty to determine consistent pseudopotentials within the QMC framework, a limitation that may significantly affect the accuracy of the technique.Comment: 13 pages, 9 figures, submitted to the Physical Review B on October 2

    Lattice effects on the spin dynamics in antiferromagnetic molecular rings

    Full text link
    We investigate spin dynamics in antiferromagnetic (AF) molecular rings at finite temperature in the presence of spin-phonon (s-p) interaction. We derive a general expression for the spin susceptibility in the weak s-p coupling limit and then we focus on the low-frequency behavior, in order to discuss a possible microscopic mechanism for nuclear relaxation in this class of magnetic materials. To lowest order in a perturbative expansion, we find that the susceptibility takes a Lorentzian profile and all spin operators (SxS^x, Sy,SzS^y, S^z) contribute to spin dynamics at wave vectors q≠0q\ne 0. Spin anisotropies and local s-p coupling play a key role in the proposed mechanism. Our results prove that small changes in the spatial symmetry of the ring induce qualitative changes in the spin dynamics at the nuclear frequency, providing a novel mechanism for nuclear relaxation. Possible experiments are proposed.Comment: 4 pages, 2 figures. to appear in PR

    Theoretical investigation of methane under pressure

    Full text link
    We present computer simulations of liquid and solid phases of condensed methane at pressures below 25 GPa, between 150 and 300 K, where no appreciable molecular dissociation occurs. We used molecular dynamics (MD) and metadynamics techniques, and empirical potentials in the rigid molecule approximation, whose validity was confirmed a posteriori by carrying out it ab initio MD simulations for selected pressure and temperature conditions. Our results for the melting line are in satisfactory agreement with existing measurements. We find that the fcc crystal transforms into a hcp structure with 4 molecules per unit cell (B phase) at about 10 GPa and 150 K, and that the B phase transforms into a monoclinic high pressure phase above 20 GPa. Our results for solid/solid phase transitions are consistent with those of Raman studies but the phase boundaries estimated in our calculations are at higher pressure than those inferred from spectroscopic data.Comment: to appear on Journ. Chem. Phy

    Magnetism and superconductivity in the t−t′−Jt{-}t^\prime{-}J model

    Full text link
    We present a systematic study of the phase diagram of the t−t′−Jt{-}t^\prime{-}J model by using the Green's function Monte Carlo (GFMC) technique, implemented within the fixed-node (FN) approximation and a wave function that contains both antiferromagnetic and d-wave pairing. This enables us to study the interplay between these two kinds of order and compare the GFMC results with the ones obtained by the simple variational approach. By using a generalization of the forward-walking technique, we are able to calculate true FN ground-state expectation values of the pair-pair correlation functions. In the case of t′=0t^\prime=0, there is a large region with a coexistence of superconductivity and antiferromagnetism, that survives up to δc∼0.10\delta_c \sim 0.10 for J/t=0.2J/t=0.2 and δc∼0.13\delta_c \sim 0.13 for J/t=0.4J/t=0.4. The presence of a finite t′/t<0t^\prime/t<0 induces a strong suppression of both magnetic (with δc≲0.03\delta_c \lesssim 0.03, for J/t=0.2J/t=0.2 and t′/t=−0.2t^\prime/t=-0.2) and pairing correlations. In particular, the latter ones are depressed both in the low-doping regime and around δ∼0.25\delta \sim 0.25, where strong size effects are present.Comment: 10 pages, 9 figure

    Weakly frustrated two-dimensional Heisenberg antiferromagnets: thermodynamic properties from a non-perturbative approach

    Full text link
    We analyze the thermodynamic properties of the spin-S two-dimensional quantum Heisenberg antiferromagnet on a square lattice with nearest and next-nearest neighbor couplings in the Neel phase (J_2/J_1<0.4) employing the quantum hierarchical reference theory (QHRT), a non-perturbative implementation of the renormalization group method to quantum systems. We investigate the staggered susceptibility, the structure factors and the correlation length at finite temperature and for different values of the frustration ratio. From the finite temperature results, we also extrapolate ground state properties, such as spin stiffness and spontaneous staggered magnetization, providing an estimate of the extent of quantum corrections. The behavior of these quantities as a function of frustration may provide some hint on the breakdown of the Neel phase at zero temperature for larger values of J_2
    • …