2 research outputs found

    Unraveling the Active Vanadium Sites and Adsorbate Dynamics in VO<sub><i>x</i></sub>/CeO<sub>2</sub> Oxidation Catalysts Using Transient IR Spectroscopy

    No full text
    The oxidative dehydrogenation (ODH) of propane over supported vanadia catalysts is an attractive route toward propene (propylene) with the potential of industrial application and has been extensively studied over decades. Despite numerous mechanistic studies, the active vanadyl site of the reaction has not been elucidated. In this work, we unravel the ODH reaction mechanism, including the nuclearity-dependent vanadyl and surface dynamics, over ceria-supported vanadia (VOx/CeO2) catalysts by applying (isotopic) modulation excitation IR spectroscopy supported by operando Raman and UV–vis spectroscopies. Based on our loading-dependent analysis, we were able to identify two different mechanisms leading to propylene, which are characterized by isopropyl- and acrylate-like intermediates. The modulation excitation IR approach also allows for the determination of the time evolution of the vanadia, hydroxyl, and adsorbate dynamics, underlining the intimate interplay between the surface vanadia species and the ceria support. Our results highlight the potential of transient IR spectroscopy to provide a detailed understanding of reaction mechanisms in oxidation catalysis and the dynamics of surface catalytic processes in general

    MXene Aerogel Derived Ultra-Active Vanadia Catalyst for Selective Conversion of Sustainable Alcohols to Base Chemicals

    No full text
    Selective oxidation reactions are an important class of the current chemical industry and will be highly important for future sustainable chemical production. Especially, the selective oxidation of primary alcohols is expected to be of high future interest, as alcohols can be obtained on technical scales from biomass fermentation. The oxidation of primary alcohols produces aldehydes, which are important intermediates. While selective methanol oxidation is industrially established, the commercial catalyst suffers from deactivation. Ethanol selective oxidation is not commercialized but would give access to sustainable acetaldehyde production when using renewable ethanol. In this work, it is shown that employing 2D MXenes as building blocks allows one to design a nanostructured oxide catalyst composed of mixed valence vanadium oxides, which outperforms on both reactions known materials by nearly an order of magnitude in activity, while showing high selectivity and stability. The study shows that the synthesis route employing 2D materials is key to obtain these attractive catalysts. V4C3Tx MXene structured as an aerogel precursor needs to be employed and mildly oxidized in an alcohol and oxygen atmosphere to result in the aspired nanostructured catalyst composed of mixed valence VO2, V6O13, and V3O7. Very likely, the bulk stable reduced valence state of the material together coupled with the nanorod arrangement allows for unprecedented oxygen mobility as well as active sites and results in an ultra-active catalyst
    corecore