46 research outputs found

    Molecular aspects of dormancy in peach (Prunus persica [L.] Batsch.)

    Full text link
    Dormancy is one of the most important adaptive mechanisms developed by perennial plants, in order to survive the low temperatures of autumn and winter in temperate climates. The study of the genes regulated during dormancy release is crucial to understand the process, with the final objective of the development of new varieties with a better adaptation to certain environments; in particular in the Mediterranean area. The general aim of this work is to understand the molecular and physiological mechanisms underlying the maintenance and release of seasonal dormancy in peach. The first part of this work is focused on the identification of peach genes related to dormancy release by suppression subtractive hybridization (SSH) and microarray hybridization. A significant number of genes identified in this work were homologous to ABA and drought related genes from other species. Our data contribute to highlight a prominent role of ABA in dormancy processes and also uncover elements of the ABA and drought regulatory response in peach, as an ABA-INSENSITIVE5 (ABI5) binding protein (AFP)-like, a dehydration-responsive element (DRE)-binding protein (DREB2C)-like, a calcium-binding annexin, and several genes regulated by stress signalling pathways. Other identified genes were also evaluated to assess the chilling requirement of cultivars by analysis of expression showing a very good correlation between the expression pattern of DAM5, together with other transcripts (BD396, DB247, SB280 and PpB63) and the chilling requirements values of five different varieties ('Big Top', 'Catherina', 'Fergold', 'Maruja' and 'Springlady') measured following Utah and Dynamic models. Furthermore, a study of chromatin modifications associated to dormancy release in the DAM6 gene is presented. A ChIP analysis of DAM6 promoter and structural gene revealed chromatin modification events similar to those observed in vernalization of Arabidopsis and cereals.Leida, CA. (2012). Molecular aspects of dormancy in peach (Prunus persica [L.] Batsch.) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/15864Palanci

    Physiological characterization of drought stress response and expression of two transcription factors and two LEA genes in three Prunus genotypes

    Get PDF
    Global warming has led to a progressive decrease in rainfall, which is reflected by a reduction of water resources in the soil and a negative effect on crop production in Mediterranean areas. Under drought stress, many plants react by inducing a different series of responses at both physiological and molecular levels, allowing them to survive for a variable period of time. Therefore, in order to understand the response of roots to drought conditions, the genotypes peach × almond ‘Garnem’ [P. amygdalus Batsch × P. persica (L.) Batsch] and their progeny, the hybrid ‘P.2175’ × ‘Garnem’-3 and OP-‘P.2175’ (P. cerasifera Ehrh.) were subjected to a period of water deficit. Drought conditions with a subsequent re-watering period were tested for potted plants for one month. Stomatal conductance and leaf water potential were measured to monitor the plant physiological responses. Significant differences among the drought stress and drought stress recovery treatments and among the genotypes were observed. In addition, four genes related to the ABA biosynthesis pathway were studied for their expression by RT-qPCR: an AN20/AN1 zinc finger protein (ppa012373m); a bZIP transcription factor (ppa013046m); a dehydrin (ppa005514m) and a LEA protein (ppa008651m). Their expression profiles correlated with our physiological results of drought response, being higher in roots than in phloem tissue. In general, the expression of the four studied genes was higher after 15 days under drought conditions. Under drought and recovery conditions, the zinc finger and bZIP transcription factors showed significant differences in their relative expression levels from LEA and dehydrin. These results suggest the role of LEA and dehydrin in the regulatory response to drought stress in Prunus genotypes. Therefore, the dehydrin and the protein LEA might be potential biomarkers to select rootstocks for tolerance to drought conditions.We wish to thank Michael Glenn for helpful comments and ideas on the ash content discussion. This work was supported by RTA2014-00062 from the Instituto Nacional de Investigación y Tecnología Agraria (INIA) and by the Research Group A12 of Aragon, Spain. We kindly appreciate the FPI-INIA 2012 grant for B. Bielsa

    Expresión de genes relacionados con la respuesta a estrés hídrico en frutales de hueso (Prunus spp)

    Get PDF
    Los frutales de hueso (Prunus spp.) difieren en cuanto a su comportamiento frente a determinados estreses medioambientales. En este trabajo se ha estudiado la respuesta a la sequía en dos genotipos utilizados como portainjertos en distintas condiciones de suelos. El híbrido almendro x melocotonero (P. amygdalus x P. persica) ‘Garnem’ y su descendiente el trihíbrido ‘P.2175’ x ‘Garnem’-3 (P. cerasifera x [P. amygdalus x P. persica]). Ambos se sometieron a un periodo de déficit hídrico durante un mes, seguido de un periodo de recuperación en umbráculo. El tratamiento de estrés se realizó manteniendo las plantas a un contenido de humedad del sustrato del 35%. Se tomaron datos fisiológicos a los 0, 10 y 15d de estrés y a los 10d y 15d de recuperación. Igualmente se estudio la expresión de dos genes en dos tejidos diferentes, que codifican para proteínas relacionadas con el ABA y el estrés abiótico, una dehidrina y una proteína de unión a zinc respectivamente. Los parámetros fisiológicos de conductancia estomática y de potencial hídrico fueron monitorizados y correlacionados con la expresión génica. Se observó que existe una relación inversa entre los parámetros fisiológicos y moleculares. La relación de ambos parámetros y su implicación en la mejora de la tolerancia a este estrés será discutida

    Prediction of components of the sporopollenin synthesis pathway in peach by genomic and expression analyses

    Get PDF
    Background: The outer cell wall of the pollen grain (exine) is an extremely resistant structure containing sporopollenin, a mixed polymer made up of fatty acids and phenolic compounds. The synthesis of sporopollenin in the tapetal cells and its proper deposition on the pollen surface are essential for the development of viable pollen. The beginning of microsporogenesis and pollen maturation in perennial plants from temperate climates, such as peach, is conditioned by the duration of flower bud dormancy. In order to identify putative genes involved in these processes, we analyzed the results of previous genomic experiments studying the dormancy-dependent gene expression in different peach cultivars. Results: The expression of 50 genes induced in flower buds after the endodormancy period (flower-bud late genes) was compared in ten cultivars of peach with different dormancy behaviour. We found two co-expression clusters enriched in putative orthologs of sporopollenin synthesis and deposition factors in Arabidopsis. Flower-bud late genes were transiently expressed in anthers coincidently with microsporogenesis and pollen maturation processes. We postulated the participation of some flower-bud late genes in the sporopollenin synthesis pathway and the transcriptional regulation of late anther development in peach. Conclusions: Peach and the model plant Arabidopsis thaliana show multiple elements in common within the essential sporopollenin synthesis pathway and gene expression regulatory mechanisms affecting anther development. The transcriptomic analysis of dormancy-released flower buds proved to be an efficient procedure for the identification of anther and pollen development genes in perennial plants showing seasonal dormancy

    SABERES DE ARTESANATO DE MIRITI: UM ESTUDO EM ABATETUBA/PA

    Get PDF
    O presente artigo provém da dissertação de mestrado apresentada ao Curso de Pós Graduação em Gestão de Conhecimento para o Desenvolvimento socioambiental da Universidade da Amazônia-UNAMA- e propõe compreender quais os saberes de artesanato de Miriti considerados relevantes pelos artesãos de Abaetetuba cuja cultura é o cartão postal deste município do Pará. A metodologia utilizada abrange diversos meios e instrumentos, tais como: levantamento bibliográfico e estudo de campo do tipo exploratório e descritivo, alél de ancorar-se num ensaio etnográfico. Dentre os resultados destacamos como os mais relevantes: os produtos tidos como os mais relevantes pelos artesãos foram os que descrevem as suas vivências e reforçam suas identidades dentro dos saberes da cultura de miriti. Tais saberes surgem, então, como ferramentas para auxiliar no repasse de saberes de miriti às escolas do município de Abaetetuba, a iniciar por uma escola estadual na sede da cidade por meio de uma revista online e, após, por meio impresso às demais escola do supracitado município. Como fundamentação teórica têm-se os textos de Gomes (2013); Ribeiro, Bezerra & Silva (2018; Silva (2015); Lélis e Carvalho (S/d)

    Molecular and morphological characterisation of the oldest Cucumis melo L. seeds found in the Western Mediterranean Basin

    Full text link
    [EN] In 2008¿2009, a rescue excavation uncovered an intact Late Bronze Age well in Sa Osa, Sardinia (Italy). The structure yielded a large number of waterlogged plant remains, of which a group of melon seeds (Cucumis melo L.) were some of the most remarkable. These seeds represent the earliest recorded remains of this taxon in the Western Mediterranean and are some of the oldest ever recorded. The plant remains were preserved in anoxic conditions and were found in a perfect state of conservation, making them ideal candidates for morphometric and molecular characterisation. A total of 96 parameters, measured using an automatic image analysis system, were specifically designed to evaluate the morphological features of 15 preserved whole seeds. DNA extraction from archaeological samples followed a procedure specifically set up to avoid any kind of contamination. A 123-SNP genotyping platform that had been validated previously was used. The morphological and molecular data of the archaeological seeds were successfully compared with those of a set of 179 accessions, including landraces, of feral and wild melons from Europe, Africa, and Asia. Both analyses confirmed that these ancient seeds did not belong to a wild melon, but instead to a cultivated one. This primitive melon could have belonged to a group of ancestral non-sweet or semi-sweet forms of chate, flexuosus, or ameri varieties, showing similarities to North African and Central Asian accessions. This finding is coherent with the reportedly important role of cucumber-like melons in the species¿ diversification process and with the accepted role of the ameri group as the ancestors of the modern sweet varieties.Sabato, D.; Esteras Gómez, C.; Grillo, O.; Peña-Chocarro, L.; Leida, C.; Ucchesu, M.; Usai, A.... (2017). Molecular and morphological characterisation of the oldest Cucumis melo L. seeds found in the Western Mediterranean Basin. Archaeological and Anthropological Sciences (Online). 1-22. https://doi.org/10.1007/s12520-017-0560-zS122Álvarez Martínez JM, Caldera P, de la Barrera JL, Nogales T, Velázquez A (2000) Museo Nacional de Arte Romano. Electra, MadridArgyris JM, Garcia-Mas J, Jahrmann T, Fernández M, Picó B, Gibon Y (2014) Development of recombinant sub-NILs containing smaller introgressions of QTL ssc5.1 determined to be involved in the accumulation of sugar via MAS and high throughput SNP genotyping. In: Havey M, Weng Y, Day B, Grumet R (eds) Cucurbitaceae 2014 proceedings. Michigan (USA) October 12-16th, pp 108–110Attene G, Rodriguez M (2008) Risorse genetiche di specie ortive della Sardegna. Euro Editrice, SassariAvital A, Paris HS (2014) Cucurbits depicted in Byzantine mosaics from Israel, 350–600 CE. Ann Bot 114:203–222Bacchetta G, Escobar P, Grillo O, Mascia F, Venora G (2011a) Seed image analysis provides evidence of taxonomical differentiation within the Lavatera triloba aggregate (Malvaceae). Flora 206:468–472Bacchetta G, Fenu G, Grillo O, Mattana E, Venora G (2011b) Identification of Sardinian species of Astragalus section melanocercis (Fabaceae) by seed image analysis. Ann Bot Fenn 48:449–454Bacchetta G, Grillo O, Mattana E, Venora G (2008) Morpho-colorimetric characterization by image analysis to identify diaspores of wild plant species. Flora 203:669–682Bakels C, Jacomet S (2003) Access to luxury food in Central Europe during the Roman period: the archaeobotanical evidence. World Archaeol 34:542–557Balmelle C (1990) Recherches franco-tunisiennes sur la mosaïque de l’Afrique antique, part 1, Xenia. L’Ecole Française de Rome, RomeBaratte F (1978) Catalogue des mosaïques romaines et paléchretiénnes du Musée du Louvre. Éditions de la Réunion des musées nationaux, ParisBates DM, Robinson RW (1995) Cucumbers, melons and water-melons. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific, Harlow, pp 89–96Beneš J, Čulíková V, Kosňovská J, Frolík J, Matiášek J (2012) New plants at Prague Castle and Hradčany in the early Modern period: a history of selected species. Interdisciplinaria Archaeologica-Natural Sciences in Archaeology 3(1):103–114Bernardini P, Perra M (2012) I nuragici, i fenici e gli altri, Sardegna e Mediterraneo tra Bronzo Finale e Prima Età del Ferro. Delfino Editore, SassariBlanca J, Cañizares J, Ziarsolo P, Esteras C, Mir G, Nuez F et al (2011) Melon transcriptome characterization: simple sequence repeats and single nucleotide polymorphisms discovery or high throughput genotyping across the species. Plant Genome 4:118–131Blanca J, Esteras C, Ziarsolo P, Pérez D, Fernández-Pedrosa V, Collado C et al (2012) Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280Blanchard-Lemée M, Ennaïfer M, Slim H, Slim L (1995) Sols de l’Afrique romaine: Mosaïques de Tunisie. Imprimerie Nationale Editions, ParisBottema S, Sarpaki A (2003) Environmental change in Crete: a 9000-year record of Holocene vegetation history and the effect of the Santorini eruption. The Holocene 13:733–749Brown TA, Cappellini E, Kistler L, Lister DL, Oliveira HR, Wales N, Schlumbaum A (2015) Recent advances in ancient DNA research and their implications for archaeobotany. Veg Hist Archaeobot 24:207–214Burger Y, Paris HS, Cohen R, Katzir N, Tadmor Y, Lewinsohn E (2010) Genetic diversity of Cucumis melo. Hortic Rev 36:165–198Castelletti L, Castiglioni E, Rottoli M (2001) L’agricoltura dell’Italia settentrionale dal Neolitico al Medioevo. In: Failla O, Forni G (eds) Le piante coltivate e la loro storia. Dalle origini al transgenico in Lombardia nel centenario della riscoperta della genetica di Mendel. Franco Angeli Editore, Milano, pp 33–84Chang KC (1973) Radiocarbon dates from China, some interim interpretations. Curr Anthropol 14:525–528Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289(5482):1139Costantini L (1977) Le Piante. In: Tucci G (ed) La città bruciata del deserto salato. Erizzo, Venezia, pp 159–171Costantini L (1987) Appendix B. Vegetal remains. In: Stacul G (ed) Prehistoric and protohistoric Swat, Pakistan. Instituto Italiano per il Medio ed Estremo Orientale, Rome, pp 155–165Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, Pompan-Lotan M et al (2011) Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Mol Biol 76:1–18Darby WJ, Ghalioungui P, Grivetti L (1977) Food, the gift of Osiris. Academic Press, LondonDíaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z et al (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.) BMC Plant Biol 11:111Díaz A, Forment J, Argyris JM, Fukino N, Tzuri G, Harel-Beja R et al (2015) Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Mol Breeding 35:188Druzhkova AS, Vorobieva NV, Trifonov VA, Graphodatsky AS (2015) Ancient DNA: results and prospects (the 30th anniversary). Russ J Genet 51(6):529–544El Hadidi MN, Fahmy AGED, Willerding U (1996) The paleoethnobotany of locality 11C, Hierakonpolis (3800-3500 BC); Egypt. Taeckholmia 16:45–60Elbaum R, Melamed-Bessudo C, Boaretto E, Galili E, Lev-Yadun S, Levy AA et al (2005) Ancient olive DNA in pits, preservation, amplification and sequence analysis. J Archaeol Sci 33:77–88Esteras C, Formisano G, Roig C, Díaz A, Blanca J, Garcia-Mas J et al (2013) SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126:1285–1303Esteras C, Nuez F, Picó B (2012) Genetic diversity studies in cucurbits using molecular tools. In: Wang Y, Behera TK, Kole C (eds) Cucurbits: genetics, genomics and breeding of cucurbits. Science Publishers Inc, New Hampshire, pp 140–198Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620Fahmy AGED (2001) Plant remains in gut contents of ancient Egyptian predynastic mummies (3750-3300 BC). J Biol Sci 1:772–774Fahmy AGED (2003) Palaeoethnobotanical studies of Egyptian predynastic cemeteries: new dimensions and contributions. In: Neumann K, Butler A, Kahlheber S (eds) Food, fuel and fields. Progress in African archaeobotany. Heinrich Barth Institut, Frankfurt, pp 95–106Fujishita N (1983) Genetic diversity and phylogenetic differentiation in melon. Curr Top Plant Breed 24:3–21Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100:903–924Fuller DQ (2012) New archaeobotanical information on plant domestication from macro-remains: tracking the evolution of domestication syndrome traits. In: Gepts P, Famula TR, Bettinger RL, Brush SB, Damania AB, McGuire PE, Qualset CO (eds) Biodiversity in agriculture. Domestication, evolution, and sustainability. Cambridge University Press, Cambridge, pp 110–135Fuller DQ, Madella M (2001) Issues in Harappan Archaeobotany: retrospect and prospect. In: Settar S, Korisettar R (eds) Indian archaeology in retrospect. Volume 2. Protohistory. Archaeology of the Harappan civilization. Indian Council of Historical Research, New Delhi, pp 317–390Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 60:11–18Germer R (1985) Flora des pharaonischen Ägypten. Deutsches Archäologisches Institut, Abt. Kairo, SonderschrGilbert MT, Binladen J, Miller W, Wiuf C, Willerslev E, Poinar H, Carlson JE, Leebens-Mack JH, Schuster SC (2007) Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res 35:1–10Gorman CF (1969) Hoabinhian: a pebble-tool complex with early plant associations in southeast Asia. Science 163:671–673Gorman CF (1972) Excavations at Spirit Cave, North Thailand: some interim interpretations. Asian Perspect 13:79–107Grillo O, Draper D, Venora G, Martínez-Laborde JB (2012) Seed image analysis and taxonomy of Diplotaxis DC. (Brassicaceae, Brassiceae). Syst Biodivers 10:57–70Grillo O, Mattana E, Venora G, Bacchetta G (2010) Statistical seed classifiers of 10 plant families representative of the Mediterranean vascular flora. Seed Sci Technol 38:455–476Gugerli F, Parducci L, Petit RJ (2005) Ancient plant DNA: review and prospects. New Phytol 166:409–418Gyulai G, Waters L, Dane F (2008) Ancient cucurbit DNA-unlocking domestication events. Fublbright Year Book, BudapestHâruta O (2011) Elliptic Fourier analysis of crown shapes in Quercus petraea trees. Ann. For Res 54:99–117Jacomet S, Kučan D, Ritter A, Suter G, Hagendorn A (2002) Punica granatum L (pomegranates) from early Roman context in Vindonissa (Switzerland). Veg Hist Archaeobot 11:79–92Jacquine P (1832) Monographie complète du melon. Roussellon, ParisJanick J, Paris HS, Parrish DC (2007) The cucurbits of Mediterranean antiquity: identification of taxa from ancient images and descriptions. Ann Bot 100:1441–1457Jeffrey C (1980) A review of the Cucurbitaceae. Bot J Linn Soc 81:233–247Jeffrey C (2005) A new system of Cucurbitaceae. Bot Zhurn 90:332–335Kajale MD (1988) Plant Economy. In: Dhavalikar MK, Sankalia HD, Ansari ZD (eds) Excavations at Inamgaon. Deccan College Postgraduate and Research Institute, Pune, pp 727–821Kajale MD (1996) Palaeobotanical investigations at Balathal: preliminary results. Man Environ 21:98–102Keimer L (1924) Die Gartenpflanzen in Alten Agypten, vol 1. Hoffmann und Campe Verlag, HamburgKeng H (1974) Economic plants of ancient North China as mentioned in Shih Ching (Book of Poetry). Econ Bot 28:391–410Kerje T, Grum M (2000) The origin of melon, Cucumis melo: a review of the literature. Acta Hort 510:37–44Kirkbride JH (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway Publishers, BooneKistler L (2012) Ancient DNA extraction from plants. In: Shapiro B, Hofreiter M (eds) Methods in molecular biology: ancient DNA. Humana Press, New York, pp 71–79Körber-Grohne U (1994) Nutzpflanzen in Deutschland. Kulturgeschichte und Biologie. 3rd ed. Theiss, StuttgartKroll H (1982) Kulturpflanzen von Tiryns. Archaeo Anz 1:467–485Kroll H (1983) Kastanas. Ausgrabungen in einem Siedlungshügel der Bronze- und Eisenzeit Makedoniens 1975–1979. Die Pflanzenfunde. Prähistorische Archäologie in Südosteuropa 2. Volker Spiess, BerlinKroll H (1984) Bronze Age and Iron Age agriculture in Kastanas, Macedonia. In: van Zeist W, Casparie WA (eds) Plants and ancient man. Balkema, Boston, pp 243–247Kučan D (1995) Zur Ernährung und dem Gebrauch von Pflanzen im Heraion von Samos im 7. Jahrhundert v Chr JDAI 110:1–64Laghetti G, Accogli R, Hammer K (2008) Different cucumber melon (Cucumis melo L.) races cultivated in Salento (Italy). Genet Resour Crop Ev 55:619–623Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F et al (2015) Variability of candidate genes and genetic association for sugar accumulation and climacteric behavior in melon (Cucumis melo L). BMC Genet 16:28Li C, Lister DL, Li H, Xu Y, Cui Y et al (2011) Ancient DNA analysis of desiccated wheat grains excavated from a Bronze Age cemetery in Xinjiang. J Archaeol Sci 38:115–119Li HL (1969) The vegetables of ancient China. Econ Bot 23:253–260Li HL (1970) The origin of cultivated plants in southeast Asia. Econ Bot 24:3–19Liu K, Muse SV (2005) Powermarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129Livarda A (2008) Introduction and dispersal of exotic food plants into Europe during the Roman and the Medieval periods. University of Leicester, DissertationLivarda A (2011) Spicing up life in northwestern Europe: exotic food plant imports in the Roman and Medieval world. Veg Hist Archaeobot 20:143–164Lo Schiavo F (2003) Sardinia between East and West, interconnections in the Mediterranean. In: Stampolidis NC, Karageorghis V (eds) Sea routes, interconnections in the Mediterranean 16th-6th BC. University of Crete, Leventis Foundation, Athens, pp 15–34Lovicu G, Labra M, De Mattia F, Farci M, Bacchetta G, Orrù M (2011) Prime osservazioni sui vinaccioli rinvenuti negli scavi di Sa Osa. In: Mastino A, Spanu PG, Usai A, Zucca R (eds) Tharros Felix 4. Carocci Editore, Roma, pp 249–255Manen JF, Bouby L, Dalnoki O, Marinval P, Turgay M, Schlumbaum A (2003) Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. J Archaeol Sci 30:721–729Manniche L (1989) An ancient Egyptian herbal. University of Texas Press, AustinMarinval P (2000) Économie végétale à l’âge du Bronze final et à l’époque romaine en bord de Saône. In: Bonnamour L (ed) Archéologie des fleuves et des rivières. Errance, Paris, pp 48–52Megaloudi F (2006) Plants and diet in Greece from Neolithic to Classical Period: the archaeobotanical remains. British Archaeological Reports International Series 1516. Archaeopress, OxfordMukherjee A, Roy SC, Bera SD, Jiang H-E, Li X, Li C-S et al (2008) Results of molecular analysis of an archaeological hemp (Cannabis sativa L.) DNA sample from North West China. Genet Resour Crop Evol 55:481–485Munger HM, Robinson RW (1991) Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep 14:43–44Murray MA (2000) Fruits, vegetables, pulses and condiments. In: Nicholson PT, Shaw I (eds) Ancient Egyptian materials and technology. Cambridge University Press, Cambridge, pp 609–655Murphy C, Thompson G, Fuller DQ (2013) Roman food refuse: urban archaeobotany in Pompeii, Regio VI, Insula 1. Veg Hist Archaeobot 22:409–419Naudin C (1859) Essais dune monographiedes espèces et des varieties du genre Cucumis. Ann Sci Nat Bot 11:5–87Nesbitt M, O’Hara S (2000) Irrigation agriculture in Central Asia: a long-term perspective from Turkmenistan. In: Barker G, Gibertson D (eds) The archaeology of drylands. Living at the margin. Routledge, London-New York, pp 103–122Nunes EWLP, Esteras C, Ricarte AO, Martínez EM, Gómez-Guillamón ML, Nunes GHS, Picó MB (2017) Brazilian melon landraces resistant to Podosphaera xanthii are unique germplasm resources. Ann Appl Biol 171:214–228Oliveira HR, Civáň P, Morales J, Rodríguez-Rodríguez A, Lister DL, Jones MK (2012) Ancient DNA in archaeological wheat grains: preservation conditions and the study of pre-Hispanic agriculture on the island of Gran Canaria (Spain). J Archaeol Sci 39:828–835Orlando L, Gilbert MTP, Willerslev E (2015) Applications of next-generation sequencing. Reconstructing ancient genomes and epigenomes. Nat Rev Genet 16:395–408Orrù M, Grillo O, Lovicu G, Venora G, Bacchetta G (2013a) Morphological characterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Veg Hist Archaeobot 22:231–242Orrù M, Grillo O, Venora G, Bacchetta G (2013b) Computer vision as a method complementary to molecular analysis: grapevine cultivar seeds case study. C R Biol 335:602–615Pääbo S (1989) Ancient DNA; extraction, characterization, molecular cloning and enzymatic amplification. Proc Natl Acad Sci U S A 86:1939–1943Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679Palmer SA, Smith O, Allaby RG (2012) The blossoming of plant archaeogenetics. Ann Anat 194:146–156Paris HS (2015) Overview of the origins and history of the five major cucurbit crops: issues for ancient DNA analysis of archaeological specimens. Veget Hist Archaeobot (2016 25:405–414Paris HS, Amar Z, Lev E (2012) Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae). Ann Bot 110:23–33Paris HS, Daunay MC, Janick J (2009) The Cucurbitaceae and Solanaceae illustrated in medieval manuscripts known as the Tacuinum Sanitatis. Ann Bot 103:1187–1205Paris HS, Janick J, Daunay MC (2011) Medieval herbal iconography and lexicography of Cucumis (cucumber and melon, Cucurbitaceae) in the Occident, 1300–1458. Ann Bot 108:471–484Paris HS, Nerson H (2003) Seed dimensions in the subspecies and cultivar-groups of Cucurbita pepo. Genet Resour Crop Ev 50:615–625Pazaras T (1981) Two early Christian tombs from the western cemetery of Thessaloniki. Makedonica 21:373–389Pepe C, Giardini M, Giraudi C, Masi A, Mazzini I, Sadori L (2013) Climate and landscape in marginal marine environments: the ancient Roman harbour of Portus (Rome, Italy). Quat In 303:73–81Pinna S, Grillo O, Mattana E, Cañadas E, Bacchetta G (2014) Inter- and intraspecific morphometric variability in Juniperus L. seeds (Cupressaceae). Syst Biodivers 12:211–223Pitrat M, Hanelt P, Hammer K (2000) Some comments on infraspecific classification of cultivar of melon. Acta Hortic 510:29–36Pitrat M (2013) Phenotypic diversity in wild and cultivated melons (Cucumis melo). Plant. Biotech 30:273–278Pitrat M (2016) Melon genetic resources: phenotypic diversity and horticultural taxonomy. In: Grumet R, Katzir N, Garcia-Mas J (eds) Genetics and genomics of Cucurbitaceae, plant genetics and genomics: crops and models. Springer International Publishing, New York, pp 1–36Pollmann B, Jacomet S, Schlumbaum A (2005) Morphological and genetic studies of waterlogged Prunus species from the Roman vicus Tasgetium, Switzerland. J Archaeol Sci 32:1471–1480Purugganan M, Fuller DQ (2011) Archaeological data reveal slow rates of evolution during plant domestication. Evolution 65:171–183Renfrew JM (1985) Chapter 9. Preliminary report on the botanical remains. In: Kemp BJ (ed) Amarna Reports II. Occasional Papers 2. Egypt Exploration Society, London, pp 175–190Renner SS, Schaefer H, Kocyan A (2007) Phylogenetics of Cucumis (Cucurbitaceae): cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). Evol Biol 7:58Rinaldi R, Bandini Mazzanti M, Bosi G (2013) Archaeobotany in urban site: the case of Mutina. Annali di Botanica 3:217–230Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. BioTechniques 42:343–352Sabato D, Esteras C, Grillo O, Picó B, Bacchetta G (2015a) Seed morpho-colourimetric analysis as complementary method to molecular characterization of melon diversity. Sci Hort 192:441–452Sabato D, Masi A, Ucchesu M, Peña-Chocarro L, Usai A, Giachi G, Capretti C, Bacchetta G (2015b) Archaeobotanical analysis of a Bronze Age well from Sardinia: a wealth of knowledge. Plant Biosyst 149:205–215Sadori L, Allevato E, Bellini C, Bertacchi A, Boetto G, Di Pasquale G et al (2014) Archaeobotany in Italian ancient Roman harbours. Rev Palaeobot Palyno 218:217–230Sanseverino W, Hénaff E, Vives C, Pinosio S, Burgos-Paz W, Morgante M et al (2015) Transposon insertion, structural variations and SNPs contribute to the evolution of the melon genome. Mol Biol Evol. https://doi.org/10.1093/molbev/msv152Schlumbaum A, Tensen M, Jaenicke-Després V (2008) Ancient plant DNA in archaeobotany. Veg Hist Archaeobot 17:233–244Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species from melon is from Australia. Proc Natl Ac Sci USA 107:14269–14273Serres-Giardi L, Dogimont C (2012) How microsatellite diversity helps to understand the domestication history of melon. In: Sari M, Solmaz I, Aras V (eds) Cucurbitaceae 2012, Proceedings of the Xth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Antalya (Turkey) October 15-18th, pp 254–263Smith RWA, Monroe C, Bolnick DA (2015) Detection of cytosine methylation in ancient DNA from five native American populations using bisulfite sequencing. PLoS One 10(5):e0125344. https://doi.org/10.1371/journal.pone.0125344Smykalova I, Grillo O, Bjelkova M, Hybl M, Venora G (2011) Morpho-colorimetric traits of Pisum seeds measured by an image analysis system. Seed Sci Technol 39:612–626Smykalova I, Grillo O, Bjelkova M, Pavelek M, Venora G (2013) Phenot

    Regulatory circuits involving bud dormancy factor PpeDAM6

    Get PDF
    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes have recently emerged as key potential regulators of the dormancy cycle and climate adaptation in perennial species. Particularly, PpeDAM6 has been proposed to act as a major repressor of bud dormancy release and bud break in peach (Prunus persica). PpeDAM6 expression is downregulated concomitantly with the perception of a given genotype-dependent accumulation of winter chilling time, and the coincident enrichment in H3K27me3 chromatin modification at a specific genomic region. We have identified three peach BASIC PENTACYSTEINE PROTEINs (PpeBPCs) interacting with two GA-repeat motifs present in this H3K27me3- enriched region. Moreover, PpeBPC1 represses PpeDAM6 promoter activity by transient expression experiments. On the other hand, the heterologous overexpression of PpeDAM6 in European plum (Prunus domestica) alters plant vegetative growth, resulting in dwarf plants tending toward shoot meristem collapse. These alterations in vegetative growth of transgenic lines associate with impaired hormone homeostasis due to the modulation of genes involved in jasmonic acid, cytokinin, abscisic acid, and gibberellin pathways, and the downregulation of shoot meristem factors, specifically in transgenic leaf and apical tissues. The expression of many of these genes is also modified in flower buds of peach concomitantly with PpeDAM6 downregulation, which suggests a role of hormone homeostasis mechanisms in PpeDAM6-dependent maintenance of floral bud dormancy and growth repression

    A cryptic variation in a member of the Ovate Family Proteins is underlying the melon fruit shape QTL fsqs8.1

    Get PDF
    Melon cultivars have a wide range of fruit morphologies. Quantitative trait loci (QTL) have been identifed underlying such diversity. This research focuses on the fruit shape QTL fsqs8.1, previously detected in a cross between the accession PI 124112 (CALC, producing elongated fruit) and the cultivar ‘Piel de Sapo’ (PS, producing oval fruit). The CALC fsqs8.1 allele induced round fruit shape, being responsible for the transgressive segregation for this trait observed in that population. In fact, the introgression line CALC8-1, carrying the fsqs8.1 locus from CALC into the PS genetic background, produced perfect round fruit. Following a map-based cloning approach, we found that the gene underlying fsqs8.1 is a member of the Ovate Family Proteins (OFP), CmOFP13, likely a homologue of AtOFP1 and SlOFP20 from Arabidopsis thaliana and tomato, respectively. The induction of the round shape was due to the higher expression of the CALC allele at the early ovary development stage. The fsqs8.1 locus showed an important structural variation, being CmOFP13 surrounded by two deletions in the CALC genome. The deletions are present at very low frequency in melon germplasm. Deletions and single nucleotide polymorphisms in the fsqs8.1 locus could not be not associated with variation in fruit shape among diferent melon accessions, what indicates that other genetic factors should be involved to induce the CALC fsqs8.1 allele efects. Therefore, fsqs8.1 is an example of a cryptic variation that alters gene expression, likely due to structural variation, resulting in phenotypic changes in melon fruit morphology.info:eu-repo/semantics/publishedVersio

    Chilling-Dependent Release of Seed and Bud Dormancy in Peach Associates to Common Changes in Gene Expression

    Get PDF
    Reproductive meristems and embryos display dormancy mechanisms in specialized structures named respectively buds and seeds that arrest the growth of perennial plants until environmental conditions are optimal for survival. Dormancy shows common physiological features in buds and seeds. A genotype-specific period of chilling is usually required to release dormancy by molecular mechanisms that are still poorly understood. In order to find common transcriptional pathways associated to dormancy release, we analyzed the chilling-dependent expression in embryos of certain genes that were previously found related to dormancy in flower buds of peach. We propose the presence of short and long-term dormancy events affecting respectively the germination rate and seedling development by independent mechanisms. Short periods of chilling seem to improve germination in an abscisic acid-dependent manner, whereas the positive effect of longer cold treatments on physiological dwarfing coincides with the accumulation of phenylpropanoids in the seed
    corecore