226 research outputs found
O6-methylguanine DNA methyltransferase (MGMT) expression in U1242 glioblastoma cells enhances in vitro clonogenicity, tumor implantation in vivo, and sensitivity to alisertib-carboplatin combination treatment
Glioblastoma (GBM) is the most common and aggressive primary adult CNS tumor. Increased understanding of glioma biology is needed for novel treatment strategies and maximization of current therapies. The action of the widely used antiglioma drug, temozolomide (TMZ), relies on its ability to methylate DNA guanine bases leading to DNA double strand breaks and apoptosis. However, glioma cells capable of reversing guanine methylation via the repair enzyme O6-methylguanine DNA methyltransferase (MGMT) are resistant to TMZ. GBMs exhibiting high MGMT expression, reflected by MGMT gene promoter hypomethylation, respond poorly to both chemo- and radiation therapy. To investigate possible non-canonical biological effects of MGMT and develop a tool to investigate drug sensitivity and resistance, we generated MGMT knockout (KO) U1242 GBM cells. MGMT KO U1242 cells showed substantially increased sensitivity to TMZ in vivo, and unlike wildtype U1242 cells, failed to form tumors in nude mouse brains. They also showed reduced growth in soft agar, as did wildtype U1242 and additional glioma cell lines in which MGMT expression was knocked down by siRNA. MGMT thus possesses cellular functions related to tumor cell engraftment and anchorage-independent growth beyond guanine methyltransferase repair. We additionally show that the combination of the AURKA inhibitor alisertib and carboplatin selectively induces apoptosis in high MGMT expressing wildtype U1242 cells versus MGMT KO U1242 cells and extends survival of mice orthotopically implanted with wildtype U1242 cells. This or other platinum-based drug combinations may represent a potentially effective treatment approach to chemotherapy for GBM with MGMT promoter hypomethylation
A Pilocytic Astrocytoma Mimicking a Clinoidal Meningioma
Pilocytic astrocytomas and meningiomas are benign, primary brain tumors that may involve the optic tract. Classically, the presence of a dural “tail” sign may differentiate a meningioma from other intracranial lesions. In this report, we describe a mass with the typical appearance of a clinoidal meningioma on magnetic resonance imaging (MRI) but postoperatively diagnosed as a pilocytic astrocytoma. This case illustrates the rare occurrence of a pilocytic astrocytoma mimicking a meningioma on MRI
Aurora-A kinase is differentially expressed in the nucleus and cytoplasm in normal MĂĽllerian epithelium and benign, borderline and malignant serous ovarian neoplasms
BACKGROUND: Aurora-A kinase is important for cellular proliferation and is implicated in the tumorigenesis of several malignancies, including of the ovary. Information regarding the expression patterns of Aurora-A in normal MĂĽllerian epithelium as well as benign, borderline and malignant epithelial ovarian neoplasms is limited.
METHODS: We investigated Aurora-A expression by immunohistochemistry in 15 benign, 19 borderline and 17 malignant ovarian serous tumors, and 16 benign, 8 borderline, and 2 malignant ovarian mucinous tumors. Twelve fimbriae from seven patients served as normal MĂĽllerian epithelium controls. We also examined Aurora-A protein expression by western blot in normal fimbriae and tumor specimens.
RESULTS: All normal fimbriae (n = 12) showed nuclear but not cytoplasmic Aurora-A immunoreactivity by immunohistochemistry. Benign ovarian tumors also showed strong nuclear Aurora-A immunoreactivity. Forty-eight percent (13/27) of borderline tumors demonstrated nuclear Aurora-A immunoreactivity, while the remainder (52%, 14/27) lacked Aurora-A staining. Nuclear Aurora-A immunoreactivity was absent in all malignant serous tumors, however, 47% (8/17) demonstrated perinuclear cytoplasmic staining. These results were statistically significant when tumor class (benign/borderline/malignant) was compared to immunoreactivity localization or intensity (Fisher Exact Test, p \u3c 0.01). Western blot analysis confirmed the greater nuclear Aurora-A expression in control Müllerian epithelium compared to borderline and malignant tumors.
CONCLUSION: Aurora-A kinase is differentially expressed across normal MĂĽllerian epithelium, benign and borderline serous and mucinous ovarian epithelial neoplasms and malignant serous ovarian tumors., with nuclear expression of unphosphorylated Aurora-A being present in normal and benign neoplastic epithelium, and lost in malignant serous neoplasms. Further studies of the possible biological and clinical implications of the loss of nuclear Aurora-A expression in ovarian tumors, and its role in ovarian carcinogenesis are warranted
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial
Background: Intensive antiplatelet therapy with three agents might be more effective than guideline treatment for preventing recurrent events in patients with acute cerebral ischaemia. We aimed to compare the safety and efficacy of intensive antiplatelet therapy (combined aspirin, clopidogrel, and dipyridamole) with that of guideline-based antiplatelet therapy.
Methods: We did an international, prospective, randomised, open-label, blinded-endpoint trial in adult participants with ischaemic stroke or transient ischaemic attack (TIA) within 48 h of onset. Participants were assigned in a 1:1 ratio using computer randomisation to receive loading doses and then 30 days of intensive antiplatelet therapy (combined aspirin 75 mg, clopidogrel 75 mg, and dipyridamole 200 mg twice daily) or guideline-based therapy (comprising either clopidogrel alone or combined aspirin and dipyridamole). Randomisation was stratified by country and index event, and minimised with prognostic baseline factors, medication use, time to randomisation, stroke-related factors, and thrombolysis. The ordinal primary outcome was the combined incidence and severity of any recurrent stroke (ischaemic or haemorrhagic; assessed using the modified Rankin Scale) or TIA within 90 days, as assessed by central telephone follow-up with masking to treatment assignment, and analysed by intention to treat. This trial is registered with the ISRCTN registry, number ISRCTN47823388.
Findings: 3096 participants (1556 in the intensive antiplatelet therapy group, 1540 in the guideline antiplatelet therapy group) were recruited from 106 hospitals in four countries between April 7, 2009, and March 18, 2016. The trial was stopped early on the recommendation of the data monitoring committee. The incidence and severity of recurrent stroke or TIA did not differ between intensive and guideline therapy (93 [6%] participants vs 105 [7%]; adjusted common odds ratio [cOR] 0·90, 95% CI 0·67–1·20, p=0·47). By contrast, intensive antiplatelet therapy was associated with more, and more severe, bleeding (adjusted cOR 2·54, 95% CI 2·05–3·16, p<0·0001).
Interpretation: Among patients with recent cerebral ischaemia, intensive antiplatelet therapy did not reduce the incidence and severity of recurrent stroke or TIA, but did significantly increase the risk of major bleeding. Triple antiplatelet therapy should not be used in routine clinical practice
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
- …