25 research outputs found

    Does science need computer science?

    No full text
    IBM Hursley Talks Series 3An afternoon of talks, to be held on Wednesday March 10 from 2:30pm in Bldg 35 Lecture Room A, arranged by the School of Chemistry in conjunction with IBM Hursley and the Combechem e-Science Project.The talks are aimed at science students (undergraduate and post-graduate) from across the faculty. This is the third series of talks we have organized, but the first time we have put them together in an afternoon. The talks are general in nature and knowledge of computer science is certainly not necessary. After the talks there will be an opportunity for a discussion with the lecturers from IBM.Does Science Need Computer Science?Chair and Moderator - Jeremy Frey, School of Chemistry.- 14:00 "Computer games for fun and profit" (*) - Andrew Reynolds - 14:45 "Anyone for tennis? The science behind WIBMledon" (*) - Matt Roberts - 15:30 Tea (Chemistry Foyer, Bldg 29 opposite bldg 35) - 15:45 "Disk Drive physics from grandmothers to gigabytes" (*) - Steve Legg - 16:35 "What could happen to your data?" (*) - Nick Jones - 17:20 Panel Session, comprising the four IBM speakers and May Glover-Gunn (IBM) - 18:00 Receptio

    SEPSen: Semantic event processing at the sensor nodes for energy efficient wireless sensor networks

    Get PDF
    Traditionally in WSNs, the sensor nodes are used only for capturing data that is then later analyzed in the more powerful gateway nodes. This requires a continuous communication that wastes energy at the sensor nodes and greatly reduces the overall network lifetime. We propose a semantic-based in-network data processing that reduces energy consumption and improves the scalability of heterogeneous sensor networks. Ontology fragments in each sensor node help identify the data routed through the sensor network. We have adapted a matching algorithm to process a changing knowledge base. Simulation results show that the networks' energy consumption is considerably reduced

    Adolescent standing postural response to backpack loads: a randomised controlled experimental study

    Get PDF
    BACKGROUND: Backpack loads produce changes in standing posture when compared with unloaded posture. Although 'poor' unloaded standing posture has been related to spinal pain, there is little evidence of whether, and how much, exposure to posterior load produces injurious effects on spinal tissue. The objective of this study was to describe the effect on adolescent sagittal plane standing posture of different loads and positions of a common design of school backpack. The underlying study aim was to test the appropriateness of two adult 'rules-of-thumb'-that for postural efficiency, backpacks should be worn high on the spine, and loads should be limited to 10% of body weight. METHOD: A randomised controlled experimental study was conducted on 250 adolescents (12–18 years), randomly selected from five South Australian metropolitan high schools. Sagittal view anatomical points were marked on head, neck, shoulder, hip, thigh, knee and ankle. There were nine experimental conditions: combinations of backpack loads (3, 5 or 10% of body weight) and positions (backpack centred at T7, T12 or L3). Sagittal plane photographs were taken of unloaded standing posture (baseline), and standing posture under the experimental conditions. Posture was quantified from the x (horizontal) coordinate of each anatomical point under each experimental condition. Differences in postural response were described, and differences between conditions were determined using Analysis of Variance models. RESULTS: Neither age nor gender was a significant factor when comparing postural response to backpack loads or conditions. Backpacks positioned at T7 produced the largest forward (horizontal) displacement at all the anatomical points. The horizontal position of all anatomical points increased linearly with load. CONCLUSION: There is evidence refuting the 'rule-of-thumb' to carry the backpack high on the back. Typical school backpacks should be positioned with the centre at waist or hip level. There is no evidence for the 10% body weight limit

    Climate Process Team on Internal-Wave Driven Ocean Mixing

    Get PDF
    Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean, and consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Climate models have been shown to be very sensitive not only to the overall level but to the detailed distribution of mixing; sub-grid-scale parameterizations based on accurate physical processes will allow model forecasts to evolve with a changing climate. Spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and destruction of internal waves, which are thought to supply much of the power for turbulent mixing. Over the last five years and under the auspices of US CLIVAR, a NSF and NOAA supported Climate Process Team has been engaged in developing, implementing and testing dynamics-base parameterizations for internal-wave driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here we review recent progress, describe the tools developed, and discuss future directions

    Dystroglycan versatility in cell adhesion: a tale of multiple motifs

    Get PDF
    Dystroglycan is a ubiquitously expressed heterodimeric adhesion receptor. The extracellular a-subunit makes connections with a number of laminin G domain ligands including laminins, agrin and perlecan in the extracellular matrix and the transmembrane b-subunit makes connections to the actin filament network via cytoskeletal linkers including dystrophin, utrophin, ezrin and plectin, depending on context. Originally discovered as part of the dystrophin glycoprotein complex of skeletal muscle, dystroglycan is an important adhesion molecule and signalling scaffold in a multitude of cell types and tissues and is involved in several diseases. Dystroglycan has emerged as a multifunctional adhesion platform with many interacting partners associating with its short unstructured cytoplasmic domain. Two particular hotspots are the cytoplasmic juxtamembrane region and at the very carboxy terminus of dystroglycan. Regions which between them have several overlapping functions: in the juxtamembrane region; a nuclear localisation signal, ezrin/radixin/moesin protein, rapsyn and ERK MAP Kinase binding function, and at the C terminus a regulatory tyrosine governing WW, SH2 and SH3 domain interactions. We will discuss the binding partners for these motifs and how their interactions and regulation can modulate the involvement of dystroglycan in a range of different adhesion structures and functions depending on context. Thus dystroglycan presents as a multifunctional scaffold involved in adhesion and adhesion-mediated signalling with its functions under exquisite spatiotemporal regulation
    corecore