3,593 research outputs found
Radiation damage in the LHCb vertex locator
The LHCb Vertex Locator (VELO) is a silicon strip detector designed to reconstruct charged particle trajectories and vertices produced at the LHCb interaction region. During the first two years of data collection, the 84 VELO sensors have been exposed to a range of fluences up to a maximum value of approximately 45 Ă 1012 1 MeV neutron equivalent (1 MeV neq). At the operational sensor temperature of approximately â7 °C, the average rate of sensor current increase is 18 ÎŒA per fbâ1, in excellent agreement with predictions. The silicon effective bandgap has been determined using current versus temperature scan data after irradiation, with an average value of Eg = 1.16±0.03±0.04 eV obtained. The first observation of n+-on-n sensor type inversion at the LHC has been made, occurring at a fluence of around 15 Ă 1012 of 1 MeV neq. The only n+-on-p sensors in use at the LHC have also been studied. With an initial fluence of approximately 3 Ă 1012 1 MeV neq, a decrease in the Effective Depletion Voltage (EDV) of around 25 V is observed. Following this initial decrease, the EDV increases at a comparable rate to the type inverted n+-on-n type sensors, with rates of (1.43±0.16) Ă 10â12 V/ 1 MeV neq and (1.35±0.25) Ă 10â12 V/ 1 MeV neq measured for n+-on-p and n+-on-n type sensors, respectively. A reduction in the charge collection efficiency due to an unexpected effect involving the second metal layer readout lines is observed
Performance of the LHCb vertex locator
The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 ÎŒm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 ÎŒm for translations in the plane transverse to the beam. A primary vertex resolution of 13 ÎŒm in the transverse plane and 71 ÎŒm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 ÎŒm is achieved for particles with transverse momentum greater than 1 GeV/c
Precision luminosity measurements at LHCb
Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy âs. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for âs = 2.76, 7 and 8 TeV (proton-proton collisions) and for âsNN = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at âs = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider
Measurement of the Top Quark Pair Production Cross Section in the All-jets Decay Channel
We present a measurement of tbar-t production using multijet final states in
pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated
luminosity of 110.3 pb(-1). The analysis has been optimized using neural
networks to achieve the smallest expected fractional uncertainty on the tbar-t
production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/-
1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this
result with previous D0 measurements, where one or both of the W bosons decay
leptonically, gives a tbar-t production cross section of 5.9 +/- 1.2(stat) +/-
1.1(syst) pb.Comment: 6 pages, 3 figures; no substative change in revisio
Search for Top Squark Pair Production in the Dielectron Channel
This report describes the first search for top squark pair production in the
channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using
74.9 +- 8.9 pb^-1 of data collected using the D0 detector. A 95% confidence
level upper limit on sigma*B is presented. The limit is above the theoretical
expectation for sigma*B for this process, but does show the sensitivity of the
current D0 data set to a particular topology for new physics.Comment: Five pages, including three figures, submitted to PRD Brief Report
Second Generation Leptoquark Search in p\bar{p} Collisions at = 1.8 TeV
We report on a search for second generation leptoquarks with the D\O\
detector at the Fermilab Tevatron collider at = 1.8 TeV.
This search is based on 12.7 pb of data. Second generation leptoquarks
are assumed to be produced in pairs and to decay into a muon and quark with
branching ratio or to neutrino and quark with branching ratio
. We obtain cross section times branching ratio limits as a function
of leptoquark mass and set a lower limit on the leptoquark mass of 111
GeV/c for and 89 GeV/c for at the 95%\
confidence level.Comment: 18 pages, FERMILAB-PUB-95/185-
Measurement of the Top Quark Pair Production Cross Section in pbar-p Collisions Using Multijet Final States
We have studied tbar-t production using multijet final states in pbar-p
collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity
of 110.3 pb(-1). Each of the top quarks with these final states decays
exclusively to a bottom quark and a W boson, with the W bosons decaying into
quark-antiquark pairs. The analysis has been optimized using neural networks to
achieve the smallest expected fractional uncertainty on the tbar-t production
cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.)
pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with
previous D0 measurements, where one or both of the W bosons decay leptonically,
gives a tbar t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.Comment: 30 pages, 32 figures; no substative change in revisio
Measurements of the branching fractions of B+âppK+ decays
The branching fractions of the decay B+ â ppÌK+ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment. The total branching fraction, its charmless component MppÌ < 2.85 GeV/c2 and the branching fractions via the resonant ccÌ states η c(1S) and Ï(2S) relative to the decay via a J/Ï intermediate state are [Equation not available: see fulltext.] Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained
Differential branching fraction and angular analysis of the decay B0âKâ0ÎŒ+ÎŒâ
The angular distribution and differential branching fraction of the decay B 0â K â0 ÎŒ + ÎŒ â are studied using a data sample, collected by the LHCb experiment in pp collisions at sâ=7 TeV, corresponding to an integrated luminosity of 1.0 fbâ1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions
Opposite-side flavour tagging of B mesons at the LHCb experiment
The calibration and performance of the oppositeside
flavour tagging algorithms used for the measurements
of time-dependent asymmetries at the LHCb experiment
are described. The algorithms have been developed using
simulated events and optimized and calibrated with
B
+ âJ/ÏK
+, B0 âJ/ÏK
â0 and B0 âD
ââ
Ό
+
ΜΌ decay
modes with 0.37 fbâ1 of data collected in pp collisions
at
â
s = 7 TeV during the 2011 physics run. The oppositeside
tagging power is determined in the B
+ â J/ÏK
+
channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty
is statistical and the second is systematic
- âŠ