31 research outputs found

    Additively manufactured metallic pentamode meta-materials

    No full text
    Mechanical metamaterials exhibit unusual mechanical properties that originate from their topological design. Pentamode metamaterials are particularly interesting because they could be designed to possess any thermodynamically admissible elasticity tensor. In this study, we additively manufacture the metallic pentamode metamaterials from a biocompatible and mechanically strong titanium alloy (Ti-6Al-4V) using an energy distribution method developed for the powder bed fusion techniques. The mechanical properties of the developed materials were a few orders of magnitude higher than those of the similar topologies fabricated previously from polymers. Moreover, the elastic modulus and yield stress of the presented pentamode metamaterials were decoupled from their relative density, meaning that the metallic meta-biomaterials with independently tailored elastic and mass transport (permeability) properties could be designed for tissue regeneration purposes.Biomaterials & Tissue Biomechanic

    Additive manufacturing of non-assembly deployable mechanisms for the treatment of large bony defects

    No full text
    Porous biomaterials are often used to treat large bony defects or fractured vertebras. Most of such biomaterials are made of metals and their alloys and have a pre-defined, fixed shape. Due to their predefined fixed shape, however, they are not suitable for implantation through minimally invasive surgical procedures. To overcome this problem, we designed three different deployable non-assembly mechanisms, which were manufactured using selective laser melting. These deployable geometries, including a bicapped cube, a bicapped trigonal antiprism, and a bicapped square antiprism, possess a large aspect ratio in their retracted state. Upon the application of an external force, they expand radially into their deployed load-bearing configuration. Using non-assembly manufacturing, revolute joints, wavelike elements, rigid rods and restrictions could be integrated into the design. The designs were manufactured in such a way that the least amount of support structures was required during the fabrication process. Additionally, the deployable structures were functional immediately after printing. Mechanical tests were performed to determine the forces required to deploy the designed structures and to determine their failure load. A maximum change of 322 ± 7% in the circumdiameter was found for the bicapped trigonal antiprism while the bicapped square antiprism showed the largest reduction in the height (61 ± 1%). A maximum force of 10.3 ± 1.6 N was required during the deployment process of the bicapped square antiprism 3. The bicapped antiprisms could support up to 1212 ± 45.5 N before they failed, while the bicapped cubes failed under a force of 232 ± 5.5 N. The elongated geometry of our designs makes them ideal for implantation using minimally invasive surgical procedures. Given the fact that these are the first non-assembly deployable bone substitutes manufactured using selective laser melting, further studies are required to make them suitable as orthopedic implants.Biomaterials & Tissue Biomechanic

    Merging strut-based and minimal surface meta-biomaterials: Decoupling surface area from mechanical properties

    No full text
    The rational design of bone-substituting biomaterials is relatively complex because they should meet a long list of requirements for optimal performance. Meta-biomaterials are micro-architected materials that hold great promise for meeting those requirements as they offer a unique combination of mechanical, mass-transport, and biological properties. There are, however, inherent couplings between the different types of properties of many such materials that make it impossible to simultaneously achieve all the design criteria. An example of such a coupling exists between the mechanical properties and the surface area. Strut-based, metallic meta-biomaterials are known to offer bone-mimicking mechanical properties, but they have limited surface area for cell adherence. Increasing the surface generally results in an undesirable increase in the mechanical properties that could lead to stress shielding. Here, we combine strut-based lattices with minimal surfaces to decouple these two properties. We added minimal surface patches to the designs of both auxetic and non-auxetic meta-biomaterials while minimizing their contribution to the mechanical properties of the resulting meta-biomaterials through the rational application of cuts or “slits”. All designs were additively manufactured using selective laser melting and mechanically tested to obtain their quasi-static mechanical properties, including their Poisson's ratio, in two configurations. A finite element-based computational homogenization code was used to compute the elastic moduli and anisotropy of the structures. The results show that the minimal surface patches substantially increase the available surface area without significantly affecting the mechanical properties. Without the slits, the surfaces significantly affected the elastic modulus and deformation behavior of the meta-biomaterials. A similar strategy could be used to tune the biodegradation rate of biodegradable metals and the permeability of meta-biomaterials in general.Biomaterials & Tissue Biomechanic

    Mesoporous bioactive glass functionalized 3D Ti-6Al-4V scaffolds with improved surface bioactivity

    No full text
    Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM),having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactivecoating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs) coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition ofMBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs) on the MBG-coated Ti-6Al-4Vscaffolds were improved as compared with those on the conventional bioactive glass (BG)-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.Biomaterials & Tissue Biomechanic

    Forming of magnesium alloy microtubes in the fabrication of biodegradable stents

    No full text
    Magnesium alloys have, in recent years, been recognized as highly promising biodegradable materials, especially for vascular stent applications. Forming of magnesium alloys into high-precision thin-wall tubes has however presented a technological barrier in the fabrication of vascular stents, because of the poor workability of magnesium at room temperature. In the present study, the forming processes, i.e., hot indirect extrusion and multi-pass cold drawing were used to fabricate seamless microtubes of a magnesium alloy. The magnesium alloy ZM21 was selected as a representative biomaterial for biodegradable stent applications. Microtubes with an outside diameter of 2.9 mm and a wall thickness of 0.2 mm were successfully produced at the fourth pass of cold drawing without inter-pass annealing. Dimensional evaluation showed that multi-pass cold drawing was effective in correcting dimensional non-uniformity arising from hot indirect extrusion. Examinations of the microstructures of microtubes revealed the generation of a large number of twins as a result of accumulated work hardening at the third and fourth passes of cold drawing, corresponding to the significantly raised forming forces. The work demonstrated the viability of the forming process route selected for the fabrication of biodegradable magnesium alloy microtubes.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials

    No full text
    Rationally designed meta-biomaterials present unprecedented combinations of mechanical, mass transport, and biological properties favorable for tissue regeneration. Here we introduce hybrid meta-biomaterials with rationally-distributed values of negative (auxetic) and positive Poisson’s ratios, and use them to design meta-implants that unlike conventional implants do not retract from the bone under biomechanical loading. We rationally design and additively manufacture six different types of meta-biomaterials (three auxetic and three conventional), which then serve as the parent materials to six hybrid meta-biomaterials (with or without transitional regions). Both single and hybrid meta-biomaterials are mechanically tested to reveal their full-field strain distribution by digital image correlation. The best-performing hybrid metabiomaterials are then selected for the design of meta-implants (hip stems), which are tested under simulated-implantation conditions.Full-field strain measurements clearly show that, under biomechanical loading, hybrid meta-implants press onto the bone on both the medial and lateral sides, thereby improving implant–bone contact and potentially implant longevity.Biomaterials & Tissue Biomechanic

    Influence of HEPES buffer on the local pH and formation of surface layer during in vitro degradation tests of magnesium in DMEM

    No full text
    The human body is a buffered environment where pH is effectively maintained. HEPES is a biological buffer often used to mimic the buffering activity of the body in in vitro studies on the degradation behavior of magnesium. However, the influence of HEPES on the degradation behavior of magnesium in the DMEM pseudo-physiological solution has not yet been determined. The research aimed at elucidating the degradation mechanisms of magnesium in DMEM with and without HEPES. The morphologies and compositions of surface layers formed during in vitro degradation tests for 15–3600 s were characterized. The effect of HEPES on the electrochemical behavior and corrosion tendency was determined by performing electrochemical tests. HEPES indeed retained the local pH, leading to intense intergranular/interparticle corrosion of magnesium made from powder and an increased degradation rate. This was attributed to an interconnected network of cracks formed at the original powder particle boundaries and grain boundaries in the surface layer, which provided pathways for the corrosive medium to interact continuously with the internal surfaces and promoted further dissolution. Surface analysis revealed significantly reduced amounts of precipitated calcium phosphates due to the buffering activity of HEPES so that magnesium became less well protected in the buffered environment.Materials Science and EngineeringMechanical, Maritime and Materials Engineerin

    Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications

    No full text
    The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the silicon- and magnesium-containing ceramic could protect magnesium from fast corrosion and at the same time stimulate cell proliferation. Methods to prepare composites with integrated microstructures - a prerequisite to achieve controlled biodegradation were developed. A systematic experimental approach was taken in order to elucidate the in vitro biodegradation mechanisms and kinetics of the composites. It was found that the composites with 20–40% homogenously dispersed bredigite particles, prepared from powders, could indeed significantly decrease the degradation rate of magnesium by up to 24 times. Slow degradation of the composites resulted in the retention of the mechanical integrity of the composites within the strength range of cortical bone after 12 days of immersion in a cell culture medium. Cell attachment, cytotoxicity and bioactivity tests confirmed the stimulatory effects of bredigite embedded in the composites on the attachment, viability and differentiation of bone marrow stromal cells. Thus, the multiple benefits of adding bredigite to magnesium in enhancing degradation behavior, mechanical properties, biocompatibility and bioactivity were obtained. The results from this research showed the excellent potential of the bredigite-containing composites for bone implant applications, thus warranting further in vitro and in vivo research.Accepted Author Manuscript(OLD) MSE-1Biomaterials & Tissue Biomechanics(OLD) MSE-

    On-Demand Magnetically-Activated Drug Delivery from Additively Manufactured Porous Bone Implants to Tackle Antibiotic-Resistant Infections

    No full text
    This study proposes a new concept for an on-demand drug releasing device intended for integration into additively manufactured (i.e., 3D printed) orthopedic implants. The system comprises a surface with conduits connected to a subsurface reservoir used for storage and on-demand release of antimicrobial agents, covered with a cap that prevents the antibacterial agents from being released until alternating magnetic field (AMF) raises the temperature of the cap, thus, releasing the stored drug. To demonstrate this concept, Ti6Al4V specimens are directly 3D printed using selective laser melting and their surface, reservoirs, and drug releasing properties are characterized. A new synthetic antimicrobial peptide, SAAP-148, is thereafter tested for its cytotoxic, osteogenic, and immunomodulatory effects at concentrations relevant for its minimal bactericidal concentration (MBC) and is compared with its natural analogue, LL-37. The results showed that AMF successfully activated the release from the 3D printed loaded samples. Both peptides demonstrated to be non-cytotoxic within the MBC levels for macrophages and preosteoblasts and did not influence their osteoimmunomodulatory behavior. The findings of this study indicate that the proposed concept is technically feasible and has the potential to be used for the development of bone implants with on-demand delivery systems to fight IAI without systemic or continuous local release of antibiotics.Biomaterials & Tissue Biomechanic

    Corrosion fatigue behavior of additively manufactured biodegradable porous iron

    No full text
    The corrosion fatigue behavior of additively manufactured topologically ordered porous iron based on diamond unit cells was studied for the first time to understand its response to cyclic loading in a simulated physiological environment. The material exhibited high fatigue resistance with fatigue strengths being 70% and 65% of yield stress in air and revised simulated body fluid, respectively, mainly due to its slow degradation and excellent ductility. However, cyclic loading significantly increased biodegradation rate, especially at higher stress levels. The observed extraordinary fatigue strength, slow biodegradation and high ductility underline the importance of porous iron as a promising bone-substituting material.Accepted Author ManuscriptBiomaterials & Tissue Biomechanics(OLD) MSE-
    corecore