180 research outputs found

    Web document classification using topic modeling based document ranking

    Get PDF
    In this paper, we propose a web document ranking method using topic modeling for effective information collection and classification. The proposed method is applied to the document ranking technique to avoid duplicated crawling when crawling at high speed. Through the proposed document ranking technique, it is feasible to remove redundant documents, classify the documents efficiently, and confirm that the crawler service is running. The proposed method enables rapid collection of many web documents; the user can search the web pages with constant data update efficiently. In addition, the efficiency of data retrieval can be improved because new information can be automatically classified and transmitted. By expanding the scope of the method to big data based web pages and improving it for application to various websites, it is expected that more effective information retrieval will be possible

    Insights from Analysis of Video Streaming Data to Improve Resource Management

    Full text link
    Today a large portion of Internet traffic is video. Over The Top (OTT) service providers offer video streaming services by creating a large distributed cloud network on top of a physical infrastructure owned by multiple entities. Our study explores insights from video streaming activity by analyzing data collected from Korea's largest OTT service provider. Our analysis of nationwide data shows interesting characteristics of video streaming such as correlation between user profile information (e.g., age, sex) and viewing habits, viewing habits of users (when do the users watch? using which devices?), viewing patterns (early leaving viewer vs. steady viewer), etc. Video on Demand (VoD) streaming involves costly (and often limited) compute, storage, and network resources. Findings from our study will be beneficial for OTTs, Content Delivery Networks (CDNs), Internet Service Providers (ISPs), and Carrier Network Operators, to improve their resource allocation and management techniques.Comment: This is a preprint electronic version of the article accepted to IEEE CloudNet 201

    The full repertoire of Drosophila gustatory receptors for detecting an aversive compound.

    Get PDF
    The ability to detect toxic compounds in foods is essential for animal survival. However, the minimal subunit composition of gustatory receptors required for sensing aversive chemicals in Drosophila is unknown. Here we report that three gustatory receptors, GR8a, GR66a and GR98b function together in the detection of L-canavanine, a plant-derived insecticide. Ectopic co-expression of Gr8a and Gr98b in Gr66a-expressing, bitter-sensing gustatory receptor neurons (GRNs) confers responsiveness to L-canavanine. Furthermore, misexpression of all three Grs enables salt- or sweet-sensing GRNs to respond to L-canavanine. Introduction of these Grs in sweet-sensing GRNs switches L-canavanine from an aversive to an attractive compound. Co-expression of GR8a, GR66a and GR98b in Drosophila S2 cells induces an L-canavanine-activated nonselective cation conductance. We conclude that three GRs collaborate to produce a functional L-canavanine receptor. Thus, our results clarify the full set of GRs underlying the detection of a toxic tastant that drives avoidance behaviour in an insect

    Object-based SLAM utilizing unambiguous pose parameters considering general symmetry types

    Full text link
    Existence of symmetric objects, whose observation at different viewpoints can be identical, can deteriorate the performance of simultaneous localization and mapping(SLAM). This work proposes a system for robustly optimizing the pose of cameras and objects even in the presence of symmetric objects. We classify objects into three categories depending on their symmetry characteristics, which is efficient and effective in that it allows to deal with general objects and the objects in the same category can be associated with the same type of ambiguity. Then we extract only the unambiguous parameters corresponding to each category and use them in data association and joint optimization of the camera and object pose. The proposed approach provides significant robustness to the SLAM performance by removing the ambiguous parameters and utilizing as much useful geometric information as possible. Comparison with baseline algorithms confirms the superior performance of the proposed system in terms of object tracking and pose estimation, even in challenging scenarios where the baseline fails.Comment: This paper has been accepted to ICRA 202

    Stability of SiNX/SiNX double stack antireflection coating for single crystalline silicon solar cells

    Get PDF
    Double stack antireflection coatings have significant advantages over single-layer antireflection coatings due to their broad-range coverage of the solar spectrum. A solar cell with 60-nm/20-nm SiNX:H double stack coatings has 17.8% efficiency, while that with a 80-nm SiNX:H single coating has 17.2% efficiency. The improvement of the efficiency is due to the effect of better passivation and better antireflection of the double stack antireflection coating. It is important that SiNX:H films have strong resistance against stress factors since they are used as antireflective coating for solar cells. However, the tolerance of SiNX:H films to external stresses has never been studied. In this paper, the stability of SiNX:H films prepared by a plasma-enhanced chemical vapor deposition system is studied. The stability tests are conducted using various forms of stress, such as prolonged thermal cycle, humidity, and UV exposure. The heat and damp test was conducted for 100 h, maintaining humidity at 85% and applying thermal cycles of rapidly changing temperatures from -20°C to 85°C over 5 h. UV exposure was conducted for 50 h using a 180-W UV lamp. This confirmed that the double stack antireflection coating is stable against external stress

    Experience with Restoration of Asia Pacific Network Failures from Taiwan Earthquake

    Get PDF
    We explain how network failures were caused by a natural disaster, describe the restoration steps that were taken, and present lessons learned from the recovery. At 21:26 on December 26th (UTC+9), 2006, there was a serious undersea earthquake off the coast of Taiwan, which measured 7.1 on the Richter scale. This earthquake caused significant damage to submarine cable systems. The resulting fiber cable failures shut down communications in several countries in the Asia Pacific networks. In the first post-earthquake recovery step, BGP routers detoured traffic along redundant backup paths, which provided poor quality connection. Subsequently, operators engineered traffic to improve the quality of recovered communication. To avoid filling narrow-bandwidth links with detoured traffic, the operators had to change the BGP routing policy. Despite the routing-level first aid, a few institutions could not be directly connected to the R&E network community because they had only a single link to the network. For these single-link networks, the commodity link was temporarily used for connectivity. Then, cable connection configurations at the switches were changed to provide high bandwidth and next-generation Internet service. From the whole restoration procedure, we learned that redundant BGP routing information is useful for recovering connectivity but not for providing available bandwidth for the re-routed traffic load and that collaboration between operators is valuable in solving traffic engineering issues such as poor-quality re-routing and lost connections of single-link networks

    Predict to Detect: Prediction-guided 3D Object Detection using Sequential Images

    Full text link
    Recent camera-based 3D object detection methods have introduced sequential frames to improve the detection performance hoping that multiple frames would mitigate the large depth estimation error. Despite improved detection performance, prior works rely on naive fusion methods (e.g., concatenation) or are limited to static scenes (e.g., temporal stereo), neglecting the importance of the motion cue of objects. These approaches do not fully exploit the potential of sequential images and show limited performance improvements. To address this limitation, we propose a novel 3D object detection model, P2D (Predict to Detect), that integrates a prediction scheme into a detection framework to explicitly extract and leverage motion features. P2D predicts object information in the current frame using solely past frames to learn temporal motion features. We then introduce a novel temporal feature aggregation method that attentively exploits Bird's-Eye-View (BEV) features based on predicted object information, resulting in accurate 3D object detection. Experimental results demonstrate that P2D improves mAP and NDS by 3.0% and 3.7% compared to the sequential image-based baseline, illustrating that incorporating a prediction scheme can significantly improve detection accuracy.Comment: ICCV 202

    Cyber Blackbox for collecting network evidence

    Get PDF
    In recent years, the hottest topics in the security field are related to the advanced and persistent attacks. As an approach to solve this problem, we propose a cyber blackbox which collects and preserves network traffic on a virtual volume based WORM device, called EvidenceLock to ensure data integrity for security and forensic analysis. As a strategy to retain traffic for long enough periods, we introduce a deduplication method. Also this paper includes a study on the network evidence which is collected and preserved for analyzing the cause of cyber incident. Then, a method is proposed to suggest a starting point for incident analysis to a forensic practitioner who has to investigate on the vast amount of network traffic collected using the cyber blackbox. Experimental results show this approach is effectively able to reduce the amount of data to search by dividing doubtful flows from normal traffic. Finally, we discuss the results with the forensically meaningful point of view and present further works
    corecore