456 research outputs found
MRF Optimization by Graph Approximation
Graph cuts-based algorithms have achieved great success in energy
minimization for many computer vision applications. These algorithms provide
approximated solutions for multi-label energy functions via move-making
approach. This approach fuses the current solution with a proposal to generate
a lower-energy solution. Thus, generating the appropriate proposals is
necessary for the success of the move-making approach. However, not much
research efforts has been done on the generation of "good" proposals,
especially for non-metric energy functions. In this paper, we propose an
application-independent and energy-based approach to generate "good" proposals.
With these proposals, we present a graph cuts-based move-making algorithm
called GA-fusion (fusion with graph approximation-based proposals). Extensive
experiments support that our proposal generation is effective across different
classes of energy functions. The proposed algorithm outperforms others both on
real and synthetic problems.Comment: CVPR201
Generalized Video Deblurring for Dynamic Scenes
Several state-of-the-art video deblurring methods are based on a strong
assumption that the captured scenes are static. These methods fail to deblur
blurry videos in dynamic scenes. We propose a video deblurring method to deal
with general blurs inherent in dynamic scenes, contrary to other methods. To
handle locally varying and general blurs caused by various sources, such as
camera shake, moving objects, and depth variation in a scene, we approximate
pixel-wise kernel with bidirectional optical flows. Therefore, we propose a
single energy model that simultaneously estimates optical flows and latent
frames to solve our deblurring problem. We also provide a framework and
efficient solvers to optimize the energy model. By minimizing the proposed
energy function, we achieve significant improvements in removing blurs and
estimating accurate optical flows in blurry frames. Extensive experimental
results demonstrate the superiority of the proposed method in real and
challenging videos that state-of-the-art methods fail in either deblurring or
optical flow estimation.Comment: CVPR 2015 ora
V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map
Most of the existing deep learning-based methods for 3D hand and human pose
estimation from a single depth map are based on a common framework that takes a
2D depth map and directly regresses the 3D coordinates of keypoints, such as
hand or human body joints, via 2D convolutional neural networks (CNNs). The
first weakness of this approach is the presence of perspective distortion in
the 2D depth map. While the depth map is intrinsically 3D data, many previous
methods treat depth maps as 2D images that can distort the shape of the actual
object through projection from 3D to 2D space. This compels the network to
perform perspective distortion-invariant estimation. The second weakness of the
conventional approach is that directly regressing 3D coordinates from a 2D
image is a highly non-linear mapping, which causes difficulty in the learning
procedure. To overcome these weaknesses, we firstly cast the 3D hand and human
pose estimation problem from a single depth map into a voxel-to-voxel
prediction that uses a 3D voxelized grid and estimates the per-voxel likelihood
for each keypoint. We design our model as a 3D CNN that provides accurate
estimates while running in real-time. Our system outperforms previous methods
in almost all publicly available 3D hand and human pose estimation datasets and
placed first in the HANDS 2017 frame-based 3D hand pose estimation challenge.
The code is available in https://github.com/mks0601/V2V-PoseNet_RELEASE.Comment: HANDS 2017 Challenge Frame-based 3D Hand Pose Estimation Winner (ICCV
2017), Published at CVPR 201
- …