363 research outputs found
The mobile satellite service (MSS) systems for global personal communications
A worldwide interest has arisen on personal communications via satellite systems. The recently proposed mobile satellite service(MSS) systems are categorized four areas: geostationary earth orbit(GEO) systems, medium earth orbit(MEO) systems, low earth orbit(LEO) systems, and highly elliptical orbit(HEO) systems. Most of the systems in each category are introduced and explained including some technical details. The communication links and orbital constellations of some systems are analyzed and compared with different categories, and with different systems. Some economical aspects of the systems are mentioned. The regulatory issues about frequency spectrum allocation, and the current technical trends in these systems are summarized
Highly Variable Genomic Landscape of Endogenous Retroviruses in the C57BL/6J Inbred Strain, Depending on Individual Mouse, Gender, Organ Type, and Organ Location.
Transposable repetitive elements, named the "TREome," represent ~40% of the mouse genome. We postulate that the germ line genome undergoes temporal and spatial diversification into somatic genomes in conjunction with the TREome activity. C57BL/6J inbred mice were subjected to genomic landscape analyses using a TREome probe from murine leukemia virus-type endogenous retroviruses (MLV-ERVs). None shared the same MLV-ERV landscape within each comparison group: (1) sperm and 18 tissues from one mouse, (2) six brain compartments from two females, (3) spleen and thymus samples from four age groups, (4) three spatial tissue sets from two females, and (5) kidney and liver samples from three females and three males. Interestingly, males had more genomic MLV-ERV copies than females; moreover, only in the males, the kidneys had higher MLV-ERV copies than the livers. Perhaps, the mouse-, gender-, and tissue/cell-dependent MLV-ERV landscapes are linked to the individual-specific and dynamic phenotypes of the C57BL/6J inbred population
Reply to Emv2, the only endogenous ecotropic murine leukemia virus of C57BL/6J mice
This correspondence was written in response to the comments by Young et al. Following careful evaluation of the relevant dataset, each of the points brought up by Young et al. has been addressed in this response. We anticipate this will clarify our findings regarding ERVmch8, an ecotropic endogenous retrovirus that was shown to have cerebellum-specific and age-dependent expression patterns in C57BL/6J mice
STIM1 is required for Ca2+ signaling during mammalian fertilization
AbstractDuring fertilization in mammals, a series of oscillations in the oocyte's intracellular free Ca2+ concentration is responsible for oocyte activation and stimulation of embryonic development. The oscillations are associated with influx of Ca2+ across the plasma membrane that is probably triggered by the depletion of the intracellular stores, a mechanism known as store-operated Ca2+ entry. Recently, STIM1 has been identified in oocytes as a key component of the machinery that generates the Ca2+ influx after store depletion. In this study, the involvement of STIM1 in the sperm-induced Ca2+ oscillations and its significance in supporting subsequent embryo development were investigated. Downregulation of STIM1 levels in pig oocytes by siRNA completely inhibited the repetitive Ca2+ signal triggered by the fertilizing sperm. In addition, a significantly lower percentage of oocytes cleaved or formed blastocysts when STIM1 was downregulated prior to fertilization compared to the control groups. Restoring STIM1 levels after fertilization in such oocytes by means of mRNA injection could not rescue embryonic development that in most cases was arrested at the 2-cell stage. On the other hand, STIM1 overexpression prior to fertilization did not alter the pattern of sperm-induced Ca2+ oscillations and development of these fertilized oocytes up to the blastocyst stage was also similar to that registered in the control group. Finally, downregulation of STIM1 had no effect on oocyte activation when activation was stimulated artificially by inducing a single large elevation in the oocyte's intracellular free Ca2+ concentration. These findings suggest that STIM1 is essential for normal fertilization as it is involved in the maintenance of the long-lasting repetitive Ca2+ signal
Smooth Model Predictive Path Integral Control without Smoothing
We present a sampling-based control approach that can generate smooth actions
for general nonlinear systems without external smoothing algorithms. Model
Predictive Path Integral (MPPI) control has been utilized in numerous robotic
applications due to its appealing characteristics to solve non-convex
optimization problems. However, the stochastic nature of sampling-based methods
can cause significant chattering in the resulting commands. Chattering becomes
more prominent in cases where the environment changes rapidly, possibly even
causing the MPPI to diverge. To address this issue, we propose a method that
seamlessly combines MPPI with an input-lifting strategy. In addition, we
introduce a new action cost to smooth control sequence during trajectory
rollouts while preserving the information theoretic interpretation of MPPI,
which was derived from non-affine dynamics. We validate our method in two
nonlinear control tasks with neural network dynamics: a pendulum swing-up task
and a challenging autonomous driving task. The experimental results demonstrate
that our method outperforms the MPPI baselines with additionally applied
smoothing algorithms.Comment: Accepted to IEEE Robotics and Automation Letters (and IROS 2022). Our
video can be found at https://youtu.be/ibIks6ExGw
Tropism, Cytotoxicity, and Inflammatory Properties of Two Envelope Genes of Murine Leukemia Virus Type-Endogenous Retroviruses of C57BL/6J Mice
Envelope (env) proteins of certain endogenous retroviruses (ERVs) participate in various pathophysiological processes. In this study, we characterized pathophysiologic properties of two murine leukemia virus-type ERV (MuLV-ERV) env genes cloned from the ovary of C57BL/6J mice. The two env genes (named ENVOV1 and ENVOV2), with 1,926 bp coding region, originated from two MuLV-ERV loci on chromosomes 8 and 18, respectively. ENVOV1 and ENVOV2 were ~75 kDa and predominantly expressed on the cell membrane. They were capable of producing pseudotype murine leukemia virus virions. Tropism trait and infectivity of ENVOV2 were similar to the polytropic env; however, ENVOV1 had very low level of infectivity. Overexpression of ENVOV2, but not ENVOV1, exerted cytotoxic effects and induced expression of COX-2, IL-1β, IL-6, and iNOS. These findings suggest that the ENVOV1 and ENVOV2 are capable of serving as an env protein for virion assembly, and they exert differential cytotoxicity and modulation of inflammatory mediators
Prevalent de novo somatic mutations in superantigen genes of mouse mammary tumor viruses in the genome of C57BL/6J mice and its potential implication in the immune system
<p>Abstract</p> <p>Background</p> <p>Superantigens (SAgs) of mouse mammary tumor viruses (MMTVs) play a crucial role in T cell selection in the thymus in a T cell receptor (TCR) Vβ-specific manner and SAgs presented by B cells activate T cells in the periphery. The peripheral T cell repertoire is dynamically shaped by the steady induction of T cell tolerance against self antigens throughout the lifespan. We hypothesize that <it>de novo </it>somatic mutation of endogenous MMTV SAgs contributes to the modulation of the peripheral T cell repertoire.</p> <p>Results</p> <p>SAg coding sequences were cloned from the genomic DNAs and/or cDNAs of various tissues of female C57BL/6J mice. A total of 68 unique SAg sequences (54 translated sequences) were identified from the genomic DNAs of liver, lungs, and bone marrow, which are presumed to harbor only three endogenous MMTV loci (<it>Mtv-8</it>, <it>Mtv-9</it>, and <it>Mtv-17</it>). Similarly, 69 unique SAg sequences (58 translated sequences) were cloned from the cDNAs of 18 different tissues. Examination of putative TCR Vβ specificity suggested that some of the SAg isoforms identified in this study have Vβ specificities different from the reference SAgs of <it>Mtv-8</it>, <it>Mtv-9</it>, or <it>Mtv-17</it>.</p> <p>Conclusion</p> <p>The pool of diverse SAg isoforms, generated by <it>de novo </it>somatic mutation, may play a role in the shaping of the peripheral T cell repertoire including the autoimmune T cell population.</p
TET enzyme driven epigenetic reprogramming in early embryos and its implication on long-term health
Mammalian embryo development is initiated by the union of paternal and maternal gametes. Upon fertilization, their epigenome landscape is transformed through a series of finely orchestrated mechanisms that are crucial for survival and successful embryogenesis. Specifically, maternal or oocyte-specific reprogramming factors modulate germ cell specific epigenetic marks into their embryonic states. Rapid and dynamic changes in epigenetic marks such as DNA methylation and histone modifications are observed during early embryo development. These changes govern the structure of embryonic genome prior to zygotic genome activation. Differential changes in epigenetic marks are observed between paternal and maternal genomes because the structure of the parental genomes allows interaction with specific oocyte reprogramming factors. For instance, the paternal genome is targeted by the TET family of enzymes which oxidize the 5-methylcytosine (5mC) epigenetic mark into 5-hydroxymethylcytosine (5hmC) to lower the level of DNA methylation. The maternal genome is mainly protected from TET3-mediated oxidation by the maternal factor, STELLA. The TET3-mediated DNA demethylation occurs at the global level and is clearly observed in many mammalian species. Other epigenetic modulating enzymes, such as DNA methyltransferases, provide fine tuning of the DNA methylation level by initiating de novo methylation. The mechanisms which initiate the epigenetic reprogramming of gametes are critical for proper activation of embryonic genome and subsequent establishment of pluripotency and normal development. Clinical cases or diseases linked to mutations in reprogramming modulators exist, emphasizing the need to understand mechanistic actions of these modulators. In addition, embryos generated via in vitro embryo production system often present epigenetic abnormalities. Understanding mechanistic actions of the epigenetic modulators will potentially improve the well-being of individuals suffering from these epigenetic disorders and correct epigenetic abnormalities in embryos produced in vitro. This review will summarize the current understanding of epigenetic reprogramming by TET enzymes during early embryogenesis and highlight its clinical relevance and potential implication for assisted reproductive technologies
- …