3,078 research outputs found


    Get PDF
    In this study, two methods of entering and accessing dairy herd records are compared: the traditional mail-in Dairy Herd Improvement (DHI) system and the Direct Access to Records by Telephone (DART) system, which provides more timely and convenient access to records. An evaluation of DART was carried out using mail survey responses from 117 DART users and telephone surveys of 40 randomly selected users. Results indicate that DART users are generally satisfied with the system and feel that it improves their herd management. Variations in use of the DART system by DART users are explained by herd, cost, and management variables. DART users and comparable non-DART, DHI users are compared with respect to gains in herd production efficiency. Results indicate that DART users made somewhat better gains in most efficiency measures but that the differences were generally not statistically significant.Farm Management,

    Extension Educators Collecting Industry-specific Stakeholder Input

    Get PDF
    Extension educators have explored different methods for collecting stakeholder input, but a suitable methodology has not been agreed on. The Michigan State University Extension dairy team works with an advisory board and also collected formal stakeholder input through ten regional partner group surveys in 1997. In 2007, the team decided to seek another round of broad-based and inclusive stakeholder input. The research team decided to employ issue identification groups at different locations throughout the state and a mail survey. This paper reports on the procedure developed for this purpose and its results.focus group discussion, formative evaluation, issue identification, issue prioritization, multi-disciplinary teams, nominal group technique, Agribusiness, Research Methods/ Statistical Methods, Teaching/Communication/Extension/Profession,

    Dynamical Decoupling in Optical Fibers: Preserving Polarization Qubits from Birefringent Dephasing

    Get PDF
    One of the major challenges in quantum computation has been to preserve the coherence of a quantum system against dephasing effects of the environment. The information stored in photon polarization, for example, is quickly lost due to such dephasing, and it is crucial to preserve the input states when one tries to transmit quantum information encoded in the photons through a communication channel. We propose a dynamical decoupling sequence to protect photonic qubits from dephasing by integrating wave plates into optical fiber at prescribed locations. We simulate random birefringent noise along realistic lengths of optical fiber and study preservation of polarization qubits through such fibers enhanced with Carr-Purcell-Meiboom-Gill (CPMG) dynamical decoupling. This technique can maintain photonic qubit coherence at high fidelity, making a step towards achieving scalable and useful quantum communication with photonic qubits.Comment: 8 pages, 5 figure

    Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans

    No full text
    The Greenland and Antarctic Ice Sheets cover ~\n10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40–2.54?Tg per year in Greenland and 0.06–0.17?Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting