20,622 research outputs found
Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1.
Inward rectifying K channels are essential for maintaining resting membrane potential and regulating excitability in many cell types. Previous studies have attributed the rectification properties of strong inward rectifiers such as Kir2.1 to voltage-dependent binding of intracellular polyamines or Mg to the pore (direct open channel block), thereby preventing outward passage of K ions. We have studied interactions between polyamines and the polyamine toxins philanthotoxin and argiotoxin on inward rectification in Kir2.1. We present evidence that high affinity polyamine block is not consistent with direct open channel block, but instead involves polyamines binding to another region of the channel (intrinsic gate) to form a blocking complex that occludes the pore. This interaction defines a novel mechanism of ion channel closure
Epidemiological, clinical and laboratory characteristics of 19 serologically confirmed rickettsial disease in Singapore.
AIM: To identify epidemiological, clinical and laboratory features of serologically-proven typhus in the local setting. METHOD & RESULTS: Retrospective study looking at rickettsial serologies done over a six-month period and collection of the epidemological, clinical, laboratory and treatment response data from the case notes of the patients with an ordered rickettsial serology. Twenty of the 35 cases had a positive serology. Of these 20 patients, 18 were already clinically diagnosed as having murine typhus. All except one were males and all were migrant workers. Majority of the patients were construction workers staying in containers where rats abound. The most consistent clinical features were high fever (100%) for a median period of seven days, headache (94%) and cough (47%). The white cell count was usually normal (74%) but thrombocytopenia was common (68%). Transaminitis was also common (90%) with the AST component higher than the ALT in half of the cases. Response to doxycycline therapy was rapid and most (88%) were afebrile by 72 hours. CONCLUSION: Typhus (notably murine type) can be confidently diagnosed from consistent clinical features supported by epidemiological and laboratory clues. Early recognition with the prompt treatment response will result in shorter hospital stay with decreased cost. Serological testing may only prove useful in difficult situations when the clinical diagnosis is less clear
Precise control of phase transformation process in lead zirconate titanate thin films by focused line-beam scanning
Phase transformation and grain growth processes of lead zirconate titanate (PZT) thin films have been precisely controlled by using focused line-beam scanning. The authors promoted the lateral crystallization of PZT grains by controlling a nucleation process and increasing the size of single grains to be as large as 40 Όm in length. Focused line-beam scanning allows for the selective growth and crystallization of large PZT grains on predetermined nucleation sites. The high growth rate of the selected PZT grains was attributed to successive suppression of undesirable nucleation except at predetermined positions when pretreated PZT films were exposed to the focused line beam. © 2007 American Institute of Physics
Ferroelectric properties of Pb(Zr,Ti)O<inf>3</inf> films under ion-beam induced strain
The influence of an ion-beam induced biaxial stress on the ferroelectric and dielectric properties of Pb(Zr,Ti)O3 (PZT) films is investigated using the ion beam process as a novel approach to control external stress. Tensile stress is observed to decrease the polarization, permittivity, and ferroelectric fatigue resistance of the PZT films whose structure is monoclinic. However, a compressive stress increases all of them in monoclinic PZT films. The dependence of the permittivity on stress is found not to follow the phenomenological theory relating external forces to intrinsic properties of ferroelectric materials. Changes in the ferroelectric and dielectric properties indicate that the application of a biaxial stress modulates both extrinsic and intrinsic properties of PZT films. Different degrees of dielectric non-linearity suggests the density and mobility of non-180o domain walls, and the domain switching can be controlled by an applied biaxial stress and thereby influence the ferroelectric and dielectric properties. © 2012 American Institute of Physics
Local structure and medium-range ordering in relaxor ferroelectric Pb(Zn <inf>1/3</inf>Nb <inf>2/3</inf>)O <inf>3</inf> studied using neutron pair distribution function analysis
We studied an evolution of local structure and medium-range ordering in relaxor ferroelectric Pb(Zn 1/3Nb 2/3)O 3 (PZN) from 550 to 15 K using neutron pair distribution function analysis. We show that the local structure of PZN is distorted at all temperatures studied. With decreasing temperature, a medium-range ordering of local polarizations develops with no global rhombohedral phase transition below T M. Instead, the crystal structure can be described as a mixture of polar nanoregions in a disordered lattice, similar to the case of Pb(Mg 1/3Nb 2/3)O 3. © 2006 American Institute of Physics
Ultimate Compressive Strength Computational Modeling for Stiffened Plate Panels with Nonuniform Thickness
© 2020, The Author(s). The aim of this paper is to develop computational models for the ultimate compressive strength analysis of stiffened plate panels with nonuniform thickness. Modeling welding-induced initial deformations and residual stresses was presented with the measured data. Three methods, i.e., ANSYS finite element method, ALPS/SPINE incremental Galerkin method, and ALPS/ULSAP analytical method, were employed together with existing test database obtained from a full-scale collapse testing of steel-stiffened plate structures. Sensitivity study was conducted with varying the difference in plate thickness to define a representative (equivalent) thickness for plate panels with nonuniform thickness. Guidelines are provided for structural modeling to compute the ultimate compressive strength of plate panels with variable thickness
Recommended from our members
EEG findings of reduced neural synchronization during visual integration in schizophrenia
Schizophrenia patients exhibit well-documented visual processing deficits. One area of disruption is visual integration, the ability to form global objects from local elements. However, most studies of visual integration in schizophrenia have been conducted in the context of an active attention task, which may influence the findings. In this study we examined visual integration using electroencephalography (EEG) in a passive task to elucidate neural mechanisms associated with poor visual integration. Forty-six schizophrenia patients and 30 healthy controls had EEG recorded while passively viewing figures comprised of real, illusory, or no contours. We examined visual P100, N100, and P200 event-related potential (ERP) components, as well as neural synchronization in the gamma (30-60 Hz) band assessed by the EEG phase locking factor (PLF). The N100 was significantly larger to illusory vs. no contour, and illusory vs. real contour stimuli while the P200 was larger only to real vs. illusory stimuli; there were no significant interactions with group. Compared to controls, patients failed to show increased phase locking to illusory versus no contours between 40-60 Hz. Also, controls, but not patients, had larger PLF between 30-40 Hz when viewing real vs. illusory contours. Finally, the positive symptom factor of the BPRS was negatively correlated with PLF values between 40-60 Hz to illusory stimuli, and with PLF between 30-40 Hz to real contour stimuli. These results suggest that the pattern of results across visual processing conditions is similar in patients and controls. However, patients have deficits in neural synchronization in the gamma range during basic processing of illusory contours when attentional demand is limited
Principles of structural safety studies
This chapter addresses principles of advanced structural safety studies in association with various types of extreme and accidental events. The structural consequences of extreme conditions and accidents are inevitably volatile, uncertain, complex, and ambiguous (VUCA). Methods to model random parameters affecting such extreme conditions and accidents are presented. The importance of limit states- and risk-based approaches is emphasized to manage VUCA environments. Future trends toward advanced structural safety studies are addressed
- âŠ