306,757 research outputs found

    Effect of Diethylenetriamine and Triethylamine sensitization on the critical diameter of Nitromethane

    Get PDF
    In this work, the critical diameter for detonation was measured for Nitromethane (NM) sensitized with two different amines: Diethylenetriamine (DETA) and Triethylamine (TEA). The critical diameter in glass and polyvinylchloride tubes is found to decrease rapidly as the amount of sensitizer is increased, then increase past a critical amount of sensitizer. Thus the critical diameter reaches a minimum at a critical concentration of sensitizer. It was also found that the critical diameter is lower with DETA than with TEA

    Thermal Model and Optimization of a Large Crystal Detector using a Metallic Magnetic Calorimeter

    Full text link
    We established a simple thermal model of the heat flow in a large crystal detector designed for a neutrinoless double beta decay experiment. The detector is composed of a CaMoO4_{4} crystal and a metallic magnetic calorimeter (MMC). The thermal connection between the absorber and the sensor consists of a gold film evaporated on the crystal surface and gold bonding wires attached to this film and the MMC sensor. The model describes athermal and thermal processes of heat flow to the gold film. A successive experiment based on optimization calculations of the area and thickness of the gold film showed a significant improvement in the size and rise-time of the measured signals

    Bioaffinity detection of pathogens on surfaces

    Get PDF
    The demand for improved technologies capable of rapidly detecting pathogens with high sensitivity and selectivity in complex environments continues to be a significant challenge that helps drive the development of new analytical techniques. Surface-based detection platforms are particularly attractive as multiple bioaffinity interactions between different targets and corresponding probe molecules can be monitored simultaneously in a single measurement. Furthermore, the possibilities for developing new signal transduction mechanisms alongside novel signal amplification strategies aremuchmore varied. In this article, we describe some of the latest advances in the use of surface bioaffinity detection of pathogens. Three major sections will be discussed: (i) a brief overview on the choice of probe molecules such as antibodies, proteins and aptamers specific to pathogens and surface attachment chemistries to immobilize those probes onto various substrates, (ii) highlighting examples among the current generation of surface biosensors, and (iii) exploring emerging technologies that are highly promising and likely to form the basis of the next generation of pathogenic sensors

    Third-order Intermodulation Reduction in Mobile Power Amplifiers by the First Stage Bias Control

    Get PDF
    In this paper, the third order intermodulation distortion (IMD3) of three-stage power amplifier (PA) is analyzed using the Volterra series. The analysis explains how the total IMD3 of the three-stage power amplifier can be reduced by the first-stage bias condition. The three-stage PA, which is fabricated using InGaP/GaAs hetero-junction bipolar transistor (HBT), operates with an optimized first driver stage bias for higher P1dB and good gain flatness. The power amplifier has been designed for 1626.5 MHz~1660.5 MHz satellite mobile communications. With π/4 DQPSK modulation signals, this PA can deliver a highly linear output power of 33 dBm from 3.6V supply voltage. At 33 dBm output power, it shows a gain of 31.9 dB, a power-added efficiency (PAE) of 39.8%, an adjacent channel power ratio (ACPR) of -28.2 dBc at a 31.25 KHz offset frequency

    Variable dimension automatic synthesis programs (VASP)

    Get PDF
    Variable dimension FORTRAN 4 version of the Automatic Synthesis Program (ASP) compensates for limitations within the program itself. Improvements are versatile programming language, convenient input/output format, new subprograms, variable dimensioning, and efficient storage

    New Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors

    Full text link
    New limits are presented on the cross section for Weakly Interacting Massive Particle (WIMP) nucleon scattering in the KIMS CsI(T) detector array at the Yangyang Underground Laboratory. The exposure used for these results is 24524.3 kg\cdotdays. Nuclei recoiling from WIMP interactions are identified by a pulse shape discrimination method. A low energy background due to alpha emitters on the crystal surfaces is identified and taken into account in the analysis. The detected numbers of nuclear recoils are consistent with zero and 90% confidence level upper limits on the WIMP interaction rates are set for electron equivalent energies from 3 keV to 11 keV. The 90% upper limit of NR event rate for 3.6-5.8 keV corresponding to 2-4 keV in NaI(T) is 0.0098 counts/kg/keV/day which is below the annual modulation amplitude reported by DAMA. This is incompatible with interpretations that enhance the modulation amplitude such as inelastic dark matter models. We establish the most stringent cross section limits on spin-dependent WIMP-proton elastic scattering for the WIMP masses greater than 20 GeV/c2.Comment: 5 pages, 6 figure

    Delivering knowledge in the field: A telecommunications service provision and maintenance case

    Get PDF
    This paper proposes a novel approach to providing knowledge management services in a business process wherein field engineers are the main process actors, providing and maintaining telecommunications services. Cooperating multi-agents play a central role for the provision of knowledge management services by integrating heterogeneous systems to collect related knowledge for the execution of mobile tasks. The proposed system is expected to increase both the performance of the mobile workforce and customer satisfaction by supporting and encouraging knowledge sharing
    • 

    corecore