7,139 research outputs found
Non-Gaussianity as a Particle Detector
We study the imprints of massive particles with spin on cosmological
correlators. Using the framework of the effective field theory of inflation, we
classify the couplings of these particles to the Goldstone boson of broken time
translations and the graviton. We show that it is possible to generate
observable non-Gaussianity within the regime of validity of the effective
theory, as long as the masses of the particles are close to the Hubble scale
and their interactions break the approximate conformal symmetry of the
inflationary background. We derive explicit shape functions for the scalar and
tensor bispectra that can serve as templates for future observational searches.Comment: 55 pages, 10 figure
Partially Massless Fields During Inflation
The representation theory of de Sitter space allows for a category of
partially massless particles which have no flat space analog, but could have
existed during inflation. We study the couplings of these exotic particles to
inflationary perturbations and determine the resulting signatures in
cosmological correlators. When inflationary perturbations interact through the
exchange of these fields, their correlation functions inherit scalings that
cannot be mimicked by extra massive fields. We discuss in detail the squeezed
limit of the tensor-scalar-scalar bispectrum, and show that certain partially
massless fields can violate the tensor consistency relation of single-field
inflation. We also consider the collapsed limit of the scalar trispectrum, and
find that the exchange of partially massless fields enhances its magnitude,
while giving no contribution to the scalar bispectrum. These characteristic
signatures provide clean detection channels for partially massless fields
during inflation.Comment: 48 pages, 5 figures. v2: references added, published versio
The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities
Scattering amplitudes at weak coupling are highly constrained by Lorentz
invariance, locality and unitarity, and depend on model details only through
coupling constants and particle content. In this paper, we develop an
understanding of inflationary correlators which parallels that of flat-space
scattering amplitudes. Specifically, we study slow-roll inflation with weak
couplings to extra massive particles, for which all correlators are controlled
by an approximate conformal symmetry on the boundary of the spacetime. After
classifying all possible contact terms in de Sitter space, we derive an
analytic expression for the four-point function of conformally coupled scalars
mediated by the tree-level exchange of massive scalars. Conformal symmetry
implies that the correlator satisfies a pair of differential equations with
respect to spatial momenta, encoding bulk time evolution in purely boundary
terms. The absence of unphysical singularities completely fixes this
correlator. A spin-raising operator relates it to the correlators associated
with the exchange of particles with spin, while weight-shifting operators map
it to the four-point function of massless scalars. We explain how these de
Sitter four-point functions can be perturbed to obtain inflationary three-point
functions. We reproduce many classic results in the literature and provide a
complete classification of all inflationary three- and four-point functions
arising from weakly broken conformal symmetry. The inflationary bispectrum
associated with the exchange of particles with arbitrary spin is completely
characterized by the soft limit of the simplest scalar-exchange four-point
function of conformally coupled scalars and a series of contact terms. Finally,
we demonstrate that the inflationary correlators contain flat-space scattering
amplitudes via a suitable analytic continuation of the external momenta.Comment: 110 pages, 13 figures, 1 table; V3: minor corrections and references
adde
Professional contributions of Massachusetts School of Art to the enrichment of art education
Thesis (Ed.M.)--Boston University This item was digitized by the Internet Archive
Recommended from our members
Cosmological double-copy relations
We present differential double-copy relations between gluon and graviton three-point functions in . We introduce a set of differential operators in anti-de Sitter (AdS) that naturally generalize on shell kinematics of scattering amplitudes in flat space. This provides a way to construct AdS correlators by replacing the kinematic variables of amplitudes with the corresponding differential operators and suitably ordering them. By construction, the resulting correlators are manifestly conformally invariant, with the correct flat-space limit and exhibit a differential double-copy structure
The Cosmological Bootstrap: Spinning Correlators from Symmetries and Factorization
We extend the cosmological bootstrap to correlators involving massless
particles with spin. In de Sitter space, these correlators are constrained both
by symmetries and by locality. In particular, the de Sitter isometries become
conformal symmetries on the future boundary of the spacetime, which are
reflected in a set of Ward identities that the boundary correlators must
satisfy. We solve these Ward identities by acting with weight-shifting
operators on scalar seed solutions. Using this weight-shifting approach, we
derive three- and four-point correlators of massless spin-1 and spin-2 fields
with conformally coupled scalars. Four-point functions arising from tree-level
exchange are singular in particular kinematic configurations, and the
coefficients of these singularities satisfy certain factorization properties.
We show that in many cases these factorization limits fix the structure of the
correlators uniquely, without having to solve the conformal Ward identities.
The additional constraint of locality for massless spinning particles manifests
itself as current conservation on the boundary. We find that the four-point
functions only satisfy current conservation if the s, t, and u-channels are
related to each other, leading to nontrivial constraints on the couplings
between the conserved currents and other operators in the theory. For spin-1
currents this implies charge conservation, while for spin-2 currents we recover
the equivalence principle from a purely boundary perspective. For multiple
spin-1 fields, we recover the structure of Yang-Mills theory. Finally, we apply
our methods to slow-roll inflation and derive a few phenomenologically relevant
scalar-tensor three-point functions.Comment: 128 pages, 15 figures; V3: minor corrections and references adde
Synchronizing the Consistency Relation
We study the -point function of the density contrast to quadratic order in
the squeezed limit during the matter-dominated (MD) and radiation-dominated
(RD) eras in synchronous gauge. Since synchronous gauge follows the free-fall
frame of observers, the equivalence principle dictates that in the gradient
approximation for the long-wavelength mode there is only a single, manifestly
time-independent consistency relation for the -point function. This simple
form is dictated by the initial mapping between synchronous and local
coordinates, unlike Newtonian gauge and its correspondingly separate dilation
and Newtonian consistency relations. Dynamical effects only appear at quadratic
order in the squeezed limit and are again characterized by a change in the
local background, also known as the separate universe approach. We show that
for the 3-point function the compatibility between these squeezed-limit
relations and second-order perturbation theory requires both the initial and
dynamical contributions to match, as they do in single-field inflation. This
clarifies the role of evolution or late-time projection effects in establishing
the consistency relation for observable bispectra, which is especially
important for radiation acoustic oscillations and for establishing consistency
below the matter-radiation equality scale in the MD era. Defining an
appropriate angle and time average of these oscillations is also important for
making separate universe predictions of spatially varying local observables
during the RD era, which can be useful for a wider range of cosmological
predictions beyond -point functions.Comment: 65 pages, 1 figur
- …