4,963 research outputs found
Signaling pathways in osteogenesis and osteoclastogenesis: Lessons from cranial sutures and applications to regenerative medicine.
One of the simplest models for examining the interplay between bone formation and resorption is the junction between the cranial bones. Although only roughly a quarter of patients diagnosed with craniosynostosis have been linked to known genetic disturbances, the molecular mechanisms elucidated from these studies have provided basic knowledge of bone homeostasis. This work has translated to methods and advances in bone tissue engineering. In this review, we examine the current knowledge of cranial suture biology derived from human craniosynostosis syndromes and discuss its application to regenerative medicine
Linear magnetoresistance in metals: guiding center diffusion in a smooth random potential
We predict that guiding center (GC) diffusion yields a linear and
non-saturating (transverse) magnetoresistance in 3D metals. Our theory is
semi-classical and applies in the regime where the transport time is much
greater than the cyclotron period, and for weak disorder potentials which are
slowly varying on a length scale much greater than the cyclotron radius. Under
these conditions, orbits with small momenta along magnetic field are
squeezed and dominate the transverse conductivity. When disorder potentials are
stronger than the Debye frequency, linear magnetoresistance is predicted to
survive up to room temperature and beyond. We argue that magnetoresistance from
GC diffusion explains the recently observed giant linear magnetoresistance in
3D Dirac materials
Online Predictive Optimization Framework for Stochastic Demand-Responsive Transit Services
This study develops an online predictive optimization framework for
dynamically operating a transit service in an area of crowd movements. The
proposed framework integrates demand prediction and supply optimization to
periodically redesign the service routes based on recently observed demand. To
predict demand for the service, we use Quantile Regression to estimate the
marginal distribution of movement counts between each pair of serviced
locations. The framework then combines these marginals into a joint demand
distribution by constructing a Gaussian copula, which captures the structure of
correlation between the marginals. For supply optimization, we devise a linear
programming model, which simultaneously determines the route structure and the
service frequency according to the predicted demand. Importantly, our framework
both preserves the uncertainty structure of future demand and leverages this
for robust route optimization, while keeping both components decoupled. We
evaluate our framework using a real-world case study of autonomous mobility in
a university campus in Denmark. The results show that our framework often
obtains the ground truth optimal solution, and can outperform conventional
methods for route optimization, which do not leverage full predictive
distributions.Comment: 34 pages, 12 figures, 5 table
Effective Exchange Rate Classifications and Growth
We propose an econometric procedure for obtaining de facto exchange rate regime classifications which we apply to study the relationship between exchange rate regimes and economic growth. Our classification method models the de jure regimes as outcomes of a multinomial logit choice problem conditional on the volatility of a country's effective exchange rate, a bilateral exchange rate and international reserves. An `effective' de facto exchange rate regime classification is then obtained by assigning country-year observations to the regime with the highest predictive probability obtained from the estimation problem. An econometric investigation into the relationship between exchange rate regimes and GDP growth finds that growth is higher under stable currency-value regimes. Significant asymmetric effects on country growth from not doing what is said are found for nonindustrialized countries. Countries that exhibit `fear of floating' experience significantly higher growth.
Quenched topological boundary modes can persist in a trivial system
Topological boundary modes (TBM) can occur at the spatial interface between a
topological and gapped trivial phase and exhibit a wavefunction that
exponentially decays in the gap. Here we argue that this intuition fails for a
temporal boundary between a prequench topological phase that possess TBM
eigenstates and a postquench gapped trivial phase that does not possess any
eigenstates in its gap. In particular, we find that characteristics of states
(e.g., probability density) prepared in a topologically non-trivial system can
persist long after it is quenched into a gapped trivial phase with spatial
profiles that appear frozen over long times postquench. After this
near-stationary window, TBM profiles decay slowly in a power-law fashion. This
behavior highlights the unusual features of nonequilibrium protocols enabling
quenches to extend and control topological states
Non-saturating large magnetoresistance in semimetals
The rapidly expanding class of quantum materials known as {\emph{topological
semimetals}} (TSM) display unique transport properties, including a striking
dependence of resistivity on applied magnetic field, that are of great interest
for both scientific and technological reasons. However, experimental signatures
that can identify or discern the dominant mechanism and connect to available
theories are scarce. Here we present the magnetic susceptibility (), the
tangent of the Hall angle () along with magnetoresistance in four
different non-magnetic semimetals with high mobilities, NbP, TaP, NbSb and
TaSb, all of which exhibit non-saturating large MR. We find that the
distinctly different temperature dependences, and the values of
in phosphides and antimonates serve as empirical criteria to
sort the MR from different origins: NbP and TaP being uncompensated semimetals
with linear dispersion, in which the non-saturating magnetoresistance arises
due to guiding center motion, while NbSb and TaSb being {\it
compensated} semimetals, with a magnetoresistance emerging from nearly perfect
charge compensation of two quadratic bands. Our results illustrate how a
combination of magnetotransport and susceptibility measurements may be used to
categorize the increasingly ubiquitous non-saturating large magnetoresistance
in TSMs.Comment: Accepted for publication at Proc. Natl. Acad. Sci., minor revisions,
6 figure
The Effect of Interactions on the Conductance of Graphene Nanoribbons
We study the effects of the interaction between electrons and holes on the
conductance G of quasi-one-dimensional graphene systems.
We first consider as a benchmark the limit in which all interactions are
negligible, recovering the predictions of the tight-binding approximation for
the spectrum of the system, and the well-known result G=4 e^2/h for the lowest
conductance quantum. Then we consider an exactly solvable field theoretical
model in which the electro-magnetic interactions are effectively local.
Finally, we use the effective field theory formalism to develop an exactly
solvable model in which we also include the effect of non-local interactions.
We find that such interactions turn the nominally metallic armchair graphene
nanoribbon into a semi-conductor, while the short-range interactions lead to a
correction to the G=4 e^2/h formula.Comment: 9 pages, 1 figur
Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels
Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC
- …