49 research outputs found

    Characterization of Zahari Zograph's nave wall paintings in the church "The nativity of the virgin" of Rila Monastery (Bulgaria) by vibrational spectroscopy and SEM-EDX analysis

    Get PDF
    An analytical study on the nave mural paintings of the church “The Nativity of the Virgin” of Rila monastery, Bulgaria, painted by Zahari Zograph was carried out. Vibrational spectroscopy was applied to identify the pigments and organic materials used in the mural paintings. To complement the spectral information, elemental composition of the samples was determined by SEM-EDX. The data showed that smalt with carbohydrate binder was applied for the blue background, green colour was executed by green earths and red-orange colour – by red lead. Azurite is the pigment used to paint the blue colour of the saints’ hoods. The mordant for gilding was prepared of drying oil, resin and siccative metal oxides as evidenced by SEM-EDX, ATR-FTIR and pyrolysis GC-MS analysis. The use of azurite is related to Zahari Zograph’s works as it was not found in any of the previously studied murals in the church painted by other artists

    A mild, efficient and catalyst-free thermoreversible ligation system based on dithiooxalates

    Get PDF
    We demonstrate a novel and ready to prepare thermoreversible hetero Diels–Alder dilinker on the basis of dithiooxalates, enabling the mild, rapid and catalyst-free linkage of diverse diene species under ambient conditions for applications in the fields of, for example, modular ligation, self-healing or recyclable materials and surface modification amongst others. The linker was studied using quantum chemical calculations, and experimentally in small molecular reactions via UV/Vis spectroscopy, mass spectrometry and NMR as well as in step-growth polymerizations with diene-difunctional building blocks – characterized via (temperature dependent) SEC and HT NMR – as an example for efficient polymer ligation

    Amphiphilic block copolymers featuring a reversible hetero Diels-Alder linkage

    Get PDF
    The present article reports the preparation of a novel class of switchable amphiphilic diblock copolymers with a temperature switchable linkage. Reversible addition fragmentation chain transfer (RAFT) polymerization was used to synthesize the individual blocks: for the preparation of the non-polar block{,} i.e. poly(isoprene-co-styrene) (P(I-co-S)) (9200 g mol-1 [less-than-or-equal] Mn [less-than-or-equal] 50 000 g mol-1{,} 1.22 [less-than-or-equal] D [less-than-or-equal] 1.36){,} a chain transfer agent (CTA{,} 3-((2-bromo-2-methylpropanoyl)oxy)propyl 2-(((dodecylthio)carbonothioyl)thio)-2-methylpropanoate) carrying a bromine group was employed{,} ready for subsequent cyclopentadienyl (Cp) transformation. For the preparation of the polar block{,} triethylene glycol methyl ether acrylate (TEGA) was polymerized (6600 g mol-1 [less-than-or-equal] Mn [less-than-or-equal] 35 000 g mol-1{,} 1.12 [less-than-or-equal] D [less-than-or-equal] 1.30) using a RAFT agent carrying a phosphoryl Z-group{,} which is able to undergo hetero Diels-Alder (HDA) ligation with Cp moieties. Both building blocks were conjugated at ambient temperature in the presence of ZnCl2 as catalyst yielding the amphiphilic block copolymer P(I-co-S)-b-PTEGA (16 000 g mol-1 [less-than-or-equal] Mn [less-than-or-equal] 68 000 g mol-1{,} 1.15 [less-than-or-equal] D [less-than-or-equal] 1.32). To investigate the bonding/debonding capability of the HDA linkage{,} high temperature nuclear magnetic resonance (HT-NMR) spectroscopy{,} high temperature dynamic light scattering (HT-DLS) and high temperature size exclusion chromatography (HT-SEC) were carried out{,} evidencing that efficiently switchable amphiphilic block copolymers were generated (>4 cycles)

    Avidin Localizations in pH-Responsive Polymersomes for Probing the Docking of Biotinylated (Macro)molecules in the Membrane and Lumen

    Get PDF
    To mimic organelles and cells and to construct next-generation therapeutics, asymmetric functionalization and location of proteins for artificial vesicles is thoroughly needed to emphasize the complex interplay of biological units and systems through spatially separated and spatiotemporal controlled actions, release, and communications. For the challenge of vesicle (= polymersome) construction, the membrane permeability and the location of the cargo are important key characteristics that determine their potential applications. Herein, an in situ and post loading process of avidin in pH-responsive and photo-cross-linked polymersomes is developed and characterized. First, loading efficiency, main location (inside, lumen, outside), and release of avidin under different conditions have been validated, including the pH-stable presence of avidin in polymersomes’ membrane outside and inside. This advantageous approach allows us to selectively functionalize the outer and inner membranes as well as the lumen with several bio(macro)molecules, generally suited for the construction of asymmetrically functionalized artificial organelles. In addition, a fluorescence resonance energy transfer (FRET) effect was used to study the permeability or uptake of the polymersome membrane against a broad range of biotinylated (macro)molecules (different typology, sizes, and shapes) under different conditions

    Light-driven proton transfer for cyclic and temporal switching of enzymatic nanoreactors

    Get PDF
    CITATION: Moreno, S. et al. 2020. Light-driven proton transfer for cyclic and temporal switching of enzymatic nanoreactors. Small, 16:2002135, doi:10.1002/smll.202002135.The original publication is available at https://onlinelibrary.wiley.comTemporal activation of biological processes by visible light and subsequent return to an inactive state in the absence of light is an essential characteristic of photoreceptor cells. Inspired by these phenomena, light-responsive materials are very attractive due to the high spatiotemporal control of light irradiation, with light being able to precisely orchestrate processes repeatedly over many cycles. Herein, it is reported that light-driven proton transfer triggered by a merocyanine-based photoacid can be used to modulate the permeability of pH-responsive polymersomes through cyclic, temporally controlled protonation and deprotonation of the polymersome membrane. The membranes can undergo repeated light-driven swelling–contraction cycles without losing functional effectiveness. When applied to enzyme loaded-nanoreactors, this membrane responsiveness is used for the reversible control of enzymatic reactions. This combination of the merocyanine-based photoacid and pH-switchable nanoreactors results in rapidly responding and versatile supramolecular systems successfully used to switch enzymatic reactions ON and OFF on demand.Publisher's versio

    Characterizing single chain nanoparticles (SCNPs): a critical survey

    No full text
    We provide the results of a critical literature survey on the reported sizes of single chain polymer nanoparticles (SCNPs), an emerging class of functional nanomaterials with sub-30 nm diameters. Comparing different size evaluation techniques (DLS, 2D DOSY NMR, viscometry as well as microscopic techniques) by plotting the SCNPs’ estimated diameters, D, versus their measured (apparent) number average molecular weight, Mn, we demonstrate the vast data scatter that besets their analysis. We show that while relative reductions in measured diameter certainly indicate chain collapse, accurately describing the absolute size of SCNPs in solution remains a challenging task. Critically, conformation-size relationships emerge depending on the method used for size determination. We submit that the vast majority of reported sizes are only indicative of the relative size reduction during chain collapse and that absolute size determination approaches currently in use need to be further refined
    corecore