33 research outputs found

    Decarboxylative Alkynylation and Cyanation of Carboxylic Acids using Photoredox Catalysis and Hypervalent Iodine Reagents

    Get PDF
    Alkynes and nitriles are important functional groups that serve as versatile building blocks in organic synthesis and find applications in material and medicinal sciences. A convenient and straightforward access to both classes of compounds under mild conditions is, therefore, highly desirable. Herein, we disclose the decarboxylative alkynylation and cyanation of broadly available carboxylic acids using photoredox catalysis and hypervalent iodine reagents. Choices of both catalysts and reagents were crucial. Computational and experimental studies revealed two different possible mechanisms that are dictated by the oxidation potential of the reagents: radical for alkynylation, ionic for cyanation

    Room-Temperature Decarboxylative Alkynylation of Carboxylic Acids Using Photoredox Catalysis and EBX Reagents

    Get PDF
    Alkynes are used as building blocks in synthetic and medicinal chemistry, chemical biology, and materials science. Therefore, efficient methods for their synthesis are the subject of intensive research. Herein, we report the direct synthesis of alkynes from readily available carboxylic acids at room temperature under visible-light irradiation. The combination of an iridium photocatalyst with ethynylbenziodoxolone (EBX) reagents allowed the decarboxylative alkynylation of carboxylic acids in good yields under mild conditions. The method could be applied to silyl-, aryl-, and alkyl- substituted alkynes. It was particularly successful in the case of alpha-amino and alpha-oxo acids derived from biomass

    Room temperature decarboxylative cyanation of carboxylic acids using photoredox catalysis and cyanobenziodoxolones: a divergent mechanism compared to alkynylation

    Get PDF
    The one-step conversion of aliphatic carboxylic acids to the corresponding nitriles has been accomplished via the merger of visible light mediated photoredox and cyanobenziodoxolones (CBX) reagents. The reaction proceeded in high yields with natural and non-natural alpha-amino and alpha-oxy acids, affording a broad scope of nitriles with excellent tolerance of the substituents in the alpha position. The direct cyanation of dipeptides and drug precursors was also achieved. The mechanism of the decarboxylative cyanation was investigated both computationally and experimentally and compared with the previously developed alkynylation reaction. Alkynylation was found to favor direct radical addition, whereas further oxidation by CBX to a carbocation and cyanide addition appeared more favorable for cyanation. A concerted mechanism is proposed for the reaction of radicals with EBX reagents, in contrast to the usually assumed addition elimination process

    Divergent Access to (1,1) and (1,2)-Azidolactones from Alkenes using Hypervalent Iodine Reagents

    Get PDF
    A versatile synthesis of azidolactones through azidation and cyclization of carboxylic acids onto alkenes has been developed. Based on either photoredox or palladium catalysis, (1,1) and (1,2) azido lactones can be selectively synthesized. The choice of catalyst and benziodoxol (on)e reagent serving as azide source was essential to initiate either a radical or Lewis acid mediated process with divergent outcome. These transformations were carried out under mild conditions using a low catalyst loading and gave access to a large scope of azido lactones

    Fine-Tuned Organic Photoredox Catalysts for Fragmentation-Alkynylation Cascades of Cyclic Oxime Ethers

    Get PDF
    Fine-tuned organic photoredox catalysts are introduced for the metal-free alkynylation of alkylnitrile radicals generated via oxidative ring opening of cyclic alkylketone oxime ethers.</p

    The ANTENATAL multicentre study to predict postnatal renal outcome in fetuses with posterior urethral valves: objectives and design

    Get PDF
    Abstract Background Posterior urethral valves (PUV) account for 17% of paediatric end-stage renal disease. A major issue in the management of PUV is prenatal prediction of postnatal renal function. Fetal ultrasound and fetal urine biochemistry are currently employed for this prediction, but clearly lack precision. We previously developed a fetal urine peptide signature that predicted in utero with high precision postnatal renal function in fetuses with PUV. We describe here the objectives and design of the prospective international multicentre ANTENATAL (multicentre validation of a fetal urine peptidome-based classifier to predict postnatal renal function in posterior urethral valves) study, set up to validate this fetal urine peptide signature. Methods Participants will be PUV pregnancies enrolled from 2017 to 2021 and followed up until 2023 in >30 European centres endorsed and supported by European reference networks for rare urological disorders (ERN eUROGEN) and rare kidney diseases (ERN ERKNet). The endpoint will be renal/patient survival at 2 years postnatally. Assuming α = 0.05, 1–β = 0.8 and a mean prevalence of severe renal outcome in PUV individuals of 0.35, 400 patients need to be enrolled to validate the previously reported sensitivity and specificity of the peptide signature. Results In this largest multicentre study of antenatally detected PUV, we anticipate bringing a novel tool to the clinic. Based on urinary peptides and potentially amended in the future with additional omics traits, this tool will be able to precisely quantify postnatal renal survival in PUV pregnancies. The main limitation of the employed approach is the need for specialized equipment. Conclusions Accurate risk assessment in the prenatal period should strongly improve the management of fetuses with PUV

    Photoredox-Catalyzed Decarboxylation for the Transfer of Alkynes and Nitriles Using Hypervalent Iodine Reagents

    No full text
    Aliphatic alkynes and nitriles are privileged motifs in organic chemistry. Therefore, alkynes and nitriles have played a central role for the exploration and development of novel strategies to forge C-C bonds in efficient manner. They are broadly used as versatile building blocks for applications in every fields of chemistry, from pharmaceuticals to material sciences. Alkynes are also of paramount importance in chemical biology for labelling experiments due to their bio orthogonality. In this context, radical chemistry provides endless alternatives to nucleophilic and electrophilic alkynylation and cyanation reactions. For decades, organic chemists have designed and improved the structure of alkynylating reagents in order to enhance the efficiency of group transfer process. Methods enabling alkynylation and cyanation of alkyl radicals have emerged and while providing useful tools, they set the basis for further improvements. Notably, the formation of alkyl radicals is limited to harsh conditions using peroxides, elevated temperature and radical initiators. To overcome these major limitations, photoredox catalysis has emerged as a powerful tool for the generation of alkyl radicals under ambient conditions. The combination of photocatalysts and alkynylating reagents allowed the photoredox-catalyzed alkynylation of organoboron trifluoroborates salt and N-phtalimide esters. In this regard, the goal of my PhD was first to extend the photoredox catalyzed alkynylation to carboxylic acids. Indeed, carboxylic acids are broadly available from biomass, and widely occurring in drugs and fine chemicals, thus making them attractive starting materials. Their conversion to alkynes would provide efficient disconnections for the construction of Csp3-Csp, and find useful applications in chemical biology. Ethynyl Benziodoxolone (EBX) reagents, CsOBz and iridium photocatalysts were identified as a promising combination for the development of this novel transformation, in which silyl, aryl and alkyl substituted alkynes were transferred. ï¡ï­amino, ï¡ï­oxy and non-heteroatom stabilized radicals could be alkynylated in good to excellent yields upon visible light irradiation. This strategy was next applied to the decarboxylative cyanation of carboxylic acids. In that regard, Cyano Benziodoxolone CBX was introduced for the first time in photoredox-catalyzed cyanation. The combination of CBX, CsOBz and the same iridium photocatalyst allowed the smooth conversion of amino and oxy acids to their corresponding nitriles, and this novel method was applied to the synthesis of important intermediates in the synthesis of APIs. During scope investigations, hydantoins were isolated as side products. This background reaction was further optimized as a novel and efficient synthesis of chiral hydantoins starting from amino acids and CBX. Finally, investigations of the reaction mechanisms of the photoredox-catalyzed decarboxylations revealed that the cyanation followed a divergent mechanism compared to alkynylation. A additional redox step between CBX and ï¡-amino radical allows the generation of cyanide and iminium, which upon recombination affords the nitrile product. Then, the second goal of my PhD was to implement the photoredox mediated alkynylation and cyanation to other starting materials. In this regard, the use of carboxylic acids as starting materials to initiate photoredox catalyzed radical fragmentations was an appealing strategy

    Alkynylation of radicals: spotlight on the "Third Way" to transfer triple bonds

    No full text
    The alkynylation of radical intermediates has been known since a long time, but had not been broadly applied in synthetic chemistry, in contrast to the alkynylation of either electrophiles or nucleophiles. In the last decade however, it has been intensively investigated leading to new disconnections to introduce versatile triple bonds into organic compounds. Nowadays, such processes are important alternatives to classical nucleophilic and electrophilic alkynylations. Efficient alkyne transfer reagents, in particular arylsulfones and hypervalent iodine reagents were introduced. Direct alkynylation, as well as cascade reactions, were subsequently developed. If relatively harsh conditions were required in the past, a new era began with progress in photoredox and transition metal catalysis. Starting from various radical precursors, alkynylations under very mild reaction conditions were rapidly discovered. This review covers the evolution of radical alkynylation, from its emergence to its current intensive stage of development. It will focus in particular on improvements for the generation of radicals and on the extension of the scope of radical precursors and alkyne sources

    Revisiting the Urech Synthesis of Hydantoins: Direct Access to Enantiopure 1,5-Substituted Hydantoins Using Cyanobenziodoxolone

    No full text
    A method for the synthesis of enantiopure 1,5-substituted hydantoins was developed using a hypervalent iodine cyanation reagent (cyanobenziodoxolone, CBX) as a source of electrophilic carbon. Starting from inexpensive commercially available enantiopure protected amino acids, the method allowed the synthesis of various hydantoins without epimerization. Formation of hydantoins from dipeptides was also possible, but partial epimerization was observed in this case. This synthetic strategy is user friendly as CBX is a bench-stable easy-to-handle crystalline reagent and avoids conventional multistep protocols, thus allowing the facile synthesis of a library of chiral hydantoins

    C-Terminal Bioconjugation of Peptides through Photoredox Catalyzed Decarboxylative Alkynylation

    No full text
    We report the first decarboxylative alkynylation of the C-terminus of peptides starting from free carboxylic acids. The reaction is fast, metal-free, and proceeds cleanly to afford alkynylated peptides with a broad tolerance for the C-terminal amino acid. By the use of hypervalent iodine reagents, the introduction of a broad range of functional groups was successful. C-terminal selectivity was achieved by differentiation of the oxidation potentials of the carboxylic acids based on the use of fine-tuned organic dyes
    corecore