292 research outputs found
Bright spots in the darkness of cancer: A review of starfishes-derived compounds and their anti-tumor action
The fight against cancer represents a great challenge for researchers and, for this reason, the search for new promising drugs to improve cancer treatments has become inevitable. Oceans, due to their wide diversity of marine species and environmental conditions have proven to be precious sources of potential natural drugs with active properties. As an example, in this context several studies performed on sponges, tunicates, mollusks, and soft corals have brought evidence of the interesting biological activities of the molecules derived from these species. Also, echinoderms constitute an important phylum, whose members produce a huge number of compounds with diverse biological activities. In particular, this review is the first attempt to summarize the knowledge about starfishes and their secondary metabolites that exhibited a significant anticancer effect against different human tumor cell lines. For each species of starfish, the extracted molecules, their effects, and mechanisms of action are described
Conceptual information processing: A robust approach to KBS-DBMS integration
Integrating the respective functionality and architectural features of knowledge base and data base management systems is a topic of considerable interest. Several aspects of this topic and associated issues are addressed. The significance of integration and the problems associated with accomplishing that integration are discussed. The shortcomings of current approaches to integration and the need to fuse the capabilities of both knowledge base and data base management systems motivates the investigation of information processing paradigms. One such paradigm is concept based processing, i.e., processing based on concepts and conceptual relations. An approach to robust knowledge and data base system integration is discussed by addressing progress made in the development of an experimental model for conceptual information processing
Modified Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid Phases
We prepared hybrid halloysite nanotubes (HNT/sodium alkanoates) in which the inner cavity of the nanoclay was selectively modified. Physicochemical studies evidenced the interactions between HNT and sodium alkanoates, ruled out clay exfoliation, quantified the amount of the loaded substance, and showed an increase of the total net negative charge, allowing us to obtain rather stable aqueous nanoclay dispersions. These dispersions were exploited as inorganic micelles to capture hydrocarbon and aromatic oils in the vapor and liquid states and were revealed to be nonfoaming but very efficient in encapsulating oils. Here, we have fabricated biocompatibile and low-cost inorganic micelles that can be exploited for industrial applications on a large scale
Light environment and Seasonal Dynamics of Microalgae in the Annual Sea Ice at Terra Nova Bay, Ross Sea, Antarctica
We investigated the physical conditions of the Spring pack ice environment at Terra Nova Bay to understand their influence on the structure and physiology of sympagic microalgae. Bio-optical methods were used to study the availability and spectral quality of solar radiation, both inside and underneath the ice cover. Pack ice thickness was around 2.5 m, with a temperature between -2 and -7°C. On average, only 1.4% of surface PAR penetrated to the bottom ice and less than 0.6% below platelet ice level. Surface UV-B radiation under the bottom ice was 0.2-0.4%. Biomass concentrations up to 2400 mg Chl a m-3, dominated by two species of diatoms (Entomoneis kjellmannii and Nitschia cf. stellata), showed marked spatial and temporal patterns. Maximum values were in the platelet ice during the first half of November, and in the bottom ice two weeks later. Strong shade adaptation characteristics emerged clearly and explained the relevant abundance of microalgae within the sea ice, with specific absorption coefficients (a*) as low as 0.005 m2 (mg Chl a)-1 and the photo-acclimation index (Ek) in the range of in situ irradiance. The biomass specific production values were low, around 0.12-0.13 mg C mg Chl a-1 h-1. The hypothesis suggesting bottom ice colonization by platelet ice microalgae is supported here
Generation of optimal trajectories for Earth hybrid pole sitters
A pole-sitter orbit is a closed path that is constantly above one of the Earth's poles, by means of continuous low thrust. This work proposes to hybridize solar sail propulsion and solar electric propulsion (SEP) on the same spacecraft, to enable such a pole-sitter orbit. Locally-optimal control laws are found with a semi-analytical inverse method, starting from a trajectory that satisfies the pole-sitter condition in the Sun-Earth circular restricted three-body problem. These solutions are subsequently used as first guess to find optimal orbits, using a direct method based on pseudospectral transcription. The orbital dynamics of both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows savings on propellant mass fraction. Finally, it is shown that for sufficiently long missions, a hybrid pole-sitter, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft
Effects of seismic water guns on the peristomial membrane of sea urchins (Arbacia lixula, Linnaeus 1758)
The seismic water gun is widely used and plays an important role in seabed imaging acquisition; however, acoustic impacts on marine organisms are currently poorly understood. The aim of this study was to analyse the biochemical responses on the peristomial membrane (PM) of the sea urchin, Arbacia lixula, when exposed to water gun shots in open water. The PM (located around the mouth) is involved in vital functions, such as nutrition and protection. Individuals of sea urchins (n = 7 for each time slot) were sampled before, at the end,
and at intervals of 3 h and 24 h after acoustic emission (duration of 20 min). Significant increases in superoxide dismutase, peroxidase, esterase and alkaline were observed immediately after water gun shots, highlighting an increase in the oxidative and inflammatory state of the tissue. Our results showed that acoustic impacts could interfere with PM vital functions, compromising the health, survival and ultimately the conservation of the species. Understanding these effects is crucial to predicting consequences on sea urchin populations and marine
ecosystems
In Vitro Cytotoxic Effect of Aqueous Extracts from Leaves and Rhizomes of the Seagrass Posidonia oceanica (L.) Delile on HepG2 Liver Cancer Cells: Focus on Autophagy and Apoptosis
Aqueous extracts from Posidonia oceanica’s green and brown (beached) leaves and rhizomes
were prepared, submitted to phenolic compound and proteomic analysis, and examined for their
potential cytotoxic effect on HepG2 liver cancer cells in culture. The chosen endpoints related to
survival and death were cell viability and locomotory behavior, cell-cycle analysis, apoptosis and
autophagy, mitochondrial membrane polarization, and cell redox state. Here, we show that 24 h
exposure to both green-leaf- and rhizome-derived extracts decreased tumor cell number in a dose–
response manner, with a mean half maximal inhibitory concentration (IC50) estimated at 83 and
11.5 µg of dry extract/mL, respectively. Exposure to the IC50 of the extracts appeared to inhibit cell
motility and long-term cell replicating capacity, with a more pronounced effect exerted by the rhizomederived preparation. The underlying death-promoting mechanisms identified involved the downregulation of autophagy, the onset of apoptosis, the decrease in the generation of reactive oxygen
species, and the dissipation of mitochondrial transmembrane potential, although, at the molecular
level, the two extracts appeared to elicit partially differentiating effects, conceivably due to their
diverse composition. In conclusion, P. oceanica extracts merit further investigation to develop novel
promising prevention and/or treatment agents, as well as beneficial supplements for the formulation
of functional foods and food-packaging material with antioxidant and anticancer propertie
Characterisation of the microflora contaminating the wooden vats used for traditional sicilian cheese production
Traditional Sicilian cheese productions are carried out employing traditional wooden vats, called tina. Many studies have highlighted the beneficial role of wooden dairy equipment by contributing to enriching the milk microflora and improving the acidification processes. The present work was undertaken to evaluate the safety of the wooden vats used to coagulate milk. To this purpose, the different microbial populations hosted onto the internal surfaces of the vats used to produce two different stretched cheeses, namely Caciocavallo Palermitano and Vastedda della valle del Bel\uecce DOP, were investigated for the presence of spoilage and pathogenic microorganisms as well as for bacteria with inhibitory effect in vitro against pathogenic microorganisms. A wide biodiversity of protechnological lactic acid bacteria (LAB), in terms of species, was revealed. Several LAB inhibited the growth of Listeria monocytogenes ATCC 7644. The wooden vats analysed resulted safe for three main findings: absence of the main pathogenic species, presence of high levels of LAB, anti-Listeria activity of many LAB
- …