28 research outputs found

    Modeling and experimental investigation of transverse mode dynamics in VECSEL

    Get PDF
    We present a new method to simulate the formation of transverse modes in VECSELs. An expression for the gain as a function of carrier density and temperature is derived from a simulation of the structure reflectivity, while the field propagation in the cavity is computed with the Huygens-Fresnel integral. A rate equation model is employed to calculate the field and gain dynamics over numerous round-trips. The optimal mode size for single mode operation for a given pump shape is calculated and compared to experimental results. The effect of pump geometry, thermal lensing and structure design will be discussed.Air Force Office of Scientific Research [FA9550-17-1-0246]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Optomechanical lasers for inertial sensing

    Full text link
    We have developed an inertially sensitive optomechanical laser by combining a Vertical-External-Cavity Surface-Emitting Laser with a monolithic fused silica resonator. By placing the external cavity mirror of the VECSEL onto the optomechanical resonator test mass, we create a sensor where external accelerations are directly transcribed onto the lasing frequency. We developed a proof-of-principle laboratory prototype and observe test mass oscillations at the resonance frequency of the sensor through the VECSEL lasing frequency, 4.18 +/- .03 Hz. In addition, we set up an ancillary heterodyne interferometer to track the motion of the mechanical oscillator's test mass, observing a resonance of 4.194 +/- 0.004 Hz. The interferometer measurements validate the VECSEL results, confirming the feasibility of using optomechanical lasers for inertial sensing

    Colliding pulse mode-locked VECSEL

    Get PDF
    We report for the first time a colliding-pulse modelocked VECSEL, with the gain and SESAM inside a ring cavity. We obtained output power of 2.2W, repetition rate of 1GHz and pulse duration of 1.16ps

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    High power and highly coherent vertical emitting semiconductor laser sources for near and mid-infrared emission.

    No full text
    Ce travail de thÚse porte sur la conception, la réalisation et l'étude physique de sources lasers de haute cohérence et de forte puissance émettant dans le proche et le moyen infrarouge. Nous nous intéressons plus particuliÚrement aux lasers à semiconducteur émettant par la surface en cavité externe verticale (VECSEL), l'objectif étant d'obtenir un fonctionnement laser monofréquence accordables et robustes, de forte puissance à température ambiante et en régime continu dans la gamme spectrale 2-3”m et autour de 1”m, avec des dispositifs pompés optiquement ou électriquement. Nous traitons de la conception et de la caractérisation des VECSEL, depuis l'optimisation du milieu à gain jusqu'à l'élaboration et la caractérisation de prototypes laser fonctionnels, et nous effectuons une étude approfondie des propriétés physiques de l'émission laser en terme de cohérence spatiale et temporelle.This thesis focuses on the design, realization and physical study of high power and highly coherent laser sources emitting in the near and mid-infrared. We are particularly interested in vertical external cavity surface emitting laser (VECSEL), the aim being to obtain a robust and tunable single frequency operation with high power at room temperature in continuous wave and in the spectral range of 2-3”m and around 1”m, with optically or electrically pumped devices . We discuss the design and characterization of VECSEL, from optimization of the gain medium to the development and characterization of a functional laser prototype, and we conduct a thorough study of the physical properties of the laser emission in terms of spatial and temporal coherence

    Sources laser à semiconducteur à émission verticale de haute cohérence et de forte puissance dans le proche et le moyen infrarouge.

    No full text
    The development of tunable single-frequency laser sources is important for several fast-growing fields such as metrology, optical sensors, spectroscopy, optical telecommunication and medicine. In this thesis we discuss the limitations of current technology, and then we show how to overcome them through the design and the physical study of highly coherent semiconductor lasers emitting in the infrared. We focus more particularly in VECSEL technology in order to obtain tunable and robust single-frequency operation. We discuss the design and characterization of these lasers, from the optimization of the gain medium to the development of functional laser devices. We then perform a deep physical study of the laser source. The various topics presented here deal with many aspects of optoelectronics such as solid state physics, traditional and quantum optics, materials technology, heat management, ect. The work presented here open the way for numerous developments related to VECSEL and their applications.Le développement de sources lasers monomodes et accordables constitue un enjeu important dans plusieurs domaines en fort développement telle que la métrologie, les senseurs optiques, la spectroscopie, le traitement optique de l'information ou la médecine. Dans cette thÚse nous faisons le point sur les limites des technologies actuelles, puis nous montrons comment les surpasser à travers la conception et l'étude physique de lasers à semiconducteur de haute cohérence émettant dans l'infrarouge. Nous nous intéressons particuliÚrement aux VECSEL dans le but d'obtenir un fonctionnement monofréquence accordables et robustes. Nous traitons de la conception et de la caractérisation de ces lasers, depuis l'optimisation du milieu à gain jusqu'à l'élaboration de prototypes laser fonctionnels. Nous effectuons ensuite une étude approfondie des propriétés physiques de la source. Les différents sujets abordés traitent de nombreux aspects de l'optoélectronique tels que la physique du solide, l'optique traditionnelle et quantique, la technologie des matériaux, la thermique, ect. Les travaux présentés ici ouvrent la voie à de nombreux développements liés aux VECSEL et à leurs applications
    corecore