1,359 research outputs found

### Finite-size scaling exponents and entanglement in the two-level BCS model

We analyze the finite-size properties of the two-level BCS model. Using the
continuous unitary transformation technique, we show that nontrivial scaling
exponents arise at the quantum critical point for various observables such as
the magnetization or the spin-spin correlation functions. We also discuss the
entanglement properties of the ground state through the concurrence which
appears to be singular at the transition.Comment: 4 pages, 3 figures, published versio

### Violation of area-law scaling for the entanglement entropy in spin 1/2 chains

Entanglement entropy obeys area law scaling for typical physical quantum
systems. This may naively be argued to follow from locality of interactions. We
show that this is not the case by constructing an explicit simple spin chain
Hamiltonian with nearest neighbor interactions that presents an entanglement
volume scaling law. This non-translational model is contrived to have couplings
that force the accumulation of singlet bonds across the half chain. Our result
is complementary to the known relation between non-translational invariant,
nearest neighbor interacting Hamiltonians and QMA complete problems.Comment: 9 pages, 4 figure

### A Generic Renormalization Method in Curved Spaces and at Finite Temperature

Based only on simple principles of renormalization in coordinate space, we
derive closed renormalized amplitudes and renormalization group constants at 1-
and 2-loop orders for scalar field theories in general backgrounds. This is
achieved through a generic renormalization procedure we develop exploiting the
central idea behind differential renormalization, which needs as only inputs
the propagator and the appropriate laplacian for the backgrounds in question.
We work out this generic coordinate space renormalization in some detail, and
subsequently back it up with specific calculations for scalar theories both on
curved backgrounds, manifestly preserving diffeomorphism invariance, and at
finite temperature.Comment: 15pp., REVTeX, UB-ECM-PF 94/1

### Ground state entanglement in quantum spin chains

A microscopic calculation of ground state entanglement for the XY and
Heisenberg models shows the emergence of universal scaling behavior at quantum
phase transitions. Entanglement is thus controlled by conformal symmetry. Away
from the critical point, entanglement gets saturated by a mass scale. Results
borrowed from conformal field theory imply irreversibility of entanglement loss
along renormalization group trajectories. Entanglement does not saturate in
higher dimensions which appears to limit the success of the density matrix
renormalization group technique. A possible connection between majorization and
renormalization group irreversibility emerges from our numerical analysis.Comment: 26 pages, 16 figures, added references, minor changes. Final versio

### Time-optimal Hamiltonian simulation and gate synthesis using homogeneous local unitaries

Motivated by experimental limitations commonly met in the design of solid
state quantum computers, we study the problems of non-local Hamiltonian
simulation and non-local gate synthesis when only homogeneous local unitaries
are performed in order to tailor the available interaction. Homogeneous (i.e.
identical for all subsystems) local manipulation implies a more refined
classification of interaction Hamiltonians than the inhomogeneous case, as well
as the loss of universality in Hamiltonian simulation. For the case of
symmetric two-qubit interactions, we provide time-optimal protocols for both
Hamiltonian simulation and gate synthesis.Comment: 7 page

### Area law and vacuum reordering in harmonic networks

We review a number of ideas related to area law scaling of the geometric
entropy from the point of view of condensed matter, quantum field theory and
quantum information. An explicit computation in arbitrary dimensions of the
geometric entropy of the ground state of a discretized scalar free field theory
shows the expected area law result. In this case, area law scaling is a
manifestation of a deeper reordering of the vacuum produced by majorization
relations. Furthermore, the explicit control on all the eigenvalues of the
reduced density matrix allows for a verification of entropy loss along the
renormalization group trajectory driven by the mass term. A further result of
our computation shows that single-copy entanglement also obeys area law
scaling, majorization relations and decreases along renormalization group
flows.Comment: 15 pages, 6 figures; typos correcte

### Half the entanglement in critical systems is distillable from a single specimen

We establish that the leading critical scaling of the single-copy
entanglement is exactly one half of the entropy of entanglement of a block in
critical infinite spin chains in a general setting, using methods of conformal
field theory. Conformal symmetry imposes that the single-copy entanglement for
critical many-body systems scales as E_1(\rho_L)=(c/6) \log L- (c/6)
(\pi^2/\log L) + O(1/L), where L is the number of constituents in a block of an
infinite chain and c corresponds to the central charge. This proves that from a
single specimen of a critical chain, already half the entanglement can be
distilled compared to the rate that is asymptotically available. The result is
substantiated by a quantitative analysis for all translationally invariant
quantum spin chains corresponding to general isotropic quasi-free fermionic
models. An analytic example of the XY model shows that away from criticality
the above simple relation is only maintained near the quantum phase transition
point.Comment: 4 pages RevTeX, 1 figure, final versio

- â€¦