1,359 research outputs found

    Finite-size scaling exponents and entanglement in the two-level BCS model

    Full text link
    We analyze the finite-size properties of the two-level BCS model. Using the continuous unitary transformation technique, we show that nontrivial scaling exponents arise at the quantum critical point for various observables such as the magnetization or the spin-spin correlation functions. We also discuss the entanglement properties of the ground state through the concurrence which appears to be singular at the transition.Comment: 4 pages, 3 figures, published versio

    Violation of area-law scaling for the entanglement entropy in spin 1/2 chains

    Full text link
    Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nearest neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half chain. Our result is complementary to the known relation between non-translational invariant, nearest neighbor interacting Hamiltonians and QMA complete problems.Comment: 9 pages, 4 figure

    A Generic Renormalization Method in Curved Spaces and at Finite Temperature

    Full text link
    Based only on simple principles of renormalization in coordinate space, we derive closed renormalized amplitudes and renormalization group constants at 1- and 2-loop orders for scalar field theories in general backgrounds. This is achieved through a generic renormalization procedure we develop exploiting the central idea behind differential renormalization, which needs as only inputs the propagator and the appropriate laplacian for the backgrounds in question. We work out this generic coordinate space renormalization in some detail, and subsequently back it up with specific calculations for scalar theories both on curved backgrounds, manifestly preserving diffeomorphism invariance, and at finite temperature.Comment: 15pp., REVTeX, UB-ECM-PF 94/1

    Ground state entanglement in quantum spin chains

    Get PDF
    A microscopic calculation of ground state entanglement for the XY and Heisenberg models shows the emergence of universal scaling behavior at quantum phase transitions. Entanglement is thus controlled by conformal symmetry. Away from the critical point, entanglement gets saturated by a mass scale. Results borrowed from conformal field theory imply irreversibility of entanglement loss along renormalization group trajectories. Entanglement does not saturate in higher dimensions which appears to limit the success of the density matrix renormalization group technique. A possible connection between majorization and renormalization group irreversibility emerges from our numerical analysis.Comment: 26 pages, 16 figures, added references, minor changes. Final versio

    Time-optimal Hamiltonian simulation and gate synthesis using homogeneous local unitaries

    Get PDF
    Motivated by experimental limitations commonly met in the design of solid state quantum computers, we study the problems of non-local Hamiltonian simulation and non-local gate synthesis when only homogeneous local unitaries are performed in order to tailor the available interaction. Homogeneous (i.e. identical for all subsystems) local manipulation implies a more refined classification of interaction Hamiltonians than the inhomogeneous case, as well as the loss of universality in Hamiltonian simulation. For the case of symmetric two-qubit interactions, we provide time-optimal protocols for both Hamiltonian simulation and gate synthesis.Comment: 7 page

    Area law and vacuum reordering in harmonic networks

    Full text link
    We review a number of ideas related to area law scaling of the geometric entropy from the point of view of condensed matter, quantum field theory and quantum information. An explicit computation in arbitrary dimensions of the geometric entropy of the ground state of a discretized scalar free field theory shows the expected area law result. In this case, area law scaling is a manifestation of a deeper reordering of the vacuum produced by majorization relations. Furthermore, the explicit control on all the eigenvalues of the reduced density matrix allows for a verification of entropy loss along the renormalization group trajectory driven by the mass term. A further result of our computation shows that single-copy entanglement also obeys area law scaling, majorization relations and decreases along renormalization group flows.Comment: 15 pages, 6 figures; typos correcte

    Half the entanglement in critical systems is distillable from a single specimen

    Full text link
    We establish that the leading critical scaling of the single-copy entanglement is exactly one half of the entropy of entanglement of a block in critical infinite spin chains in a general setting, using methods of conformal field theory. Conformal symmetry imposes that the single-copy entanglement for critical many-body systems scales as E_1(\rho_L)=(c/6) \log L- (c/6) (\pi^2/\log L) + O(1/L), where L is the number of constituents in a block of an infinite chain and c corresponds to the central charge. This proves that from a single specimen of a critical chain, already half the entanglement can be distilled compared to the rate that is asymptotically available. The result is substantiated by a quantitative analysis for all translationally invariant quantum spin chains corresponding to general isotropic quasi-free fermionic models. An analytic example of the XY model shows that away from criticality the above simple relation is only maintained near the quantum phase transition point.Comment: 4 pages RevTeX, 1 figure, final versio
    • …
    corecore