3,856 research outputs found

    Non-interacting electrons and the metal-insulator transition in 2D with correlated impurities

    Full text link
    While standard scaling arguments show that a system of non-interacting electrons in two dimensions and in the presence of uncorrelated disorder is insulating, in this work we discuss the case where inter-impurity correlations are included. We find that for point-like impurities and an infinite inter-impurity correlation length a mobility edge exists in 2D even if the individual impurity potentials are random. In the uncorrelated system we recover the scaling results, while in the intermediate regime for length scales comparable to the correlation length, the system behaves like a metal but with increasing fluctuations, before strong localization eventually takes over for length scales much larger than the correlation length. In the intermediate regime, the relevant length scale is not given by the elastic scattering length but by the inter-impurity correlation length, with important consequences for high mobility systems.Comment: 4 page

    Analyzing WLCG File Transfer Errors Through Machine Learning: An Automatic Pipeline to Support Post-mortem Distributed Data Management

    Get PDF
    The increasingly growing scale of modern computing infrastructures solicits more ingenious and automatic solutions to their management. Our work focuses on file transfer failures within the Worldwide Large Hadron Collider Computing Grid and proposes a pipeline to support distributed data management operations by suggesting potential issues to investigate. Specifically, we adopt an unsupervised learning approach leveraging Natural Language Processing and Machine Learning tools to automatically parse error messages and group similar failures. The results are presented in the form of a summary table containing the most common textual patterns and time evolution charts. This approach has two main advantages. First, the joint elaboration of the error string and the transfer’s source/destination enables more informative and compact trouble- shooting, as opposed to inspecting each site and checking unique messages separately. As a by-product, this also reduces the number of errors to check by some orders of magnitude (from unique error strings to unique categories or patterns). Second, the time evolution plots allow operators to immediately filter out secondary issues (e.g. transient or in resolution) and focus on the most serious problems first (e.g. escalating failures). As a preliminary assessment, we compare our results with the Global Grid User Support ticketing system, showing that most of our suggestions are indeed real issues (direct association), while being able to cover 89% of reported incidents (inverse relationship)

    Correlations, inhomogeneous screening, and suppression of spin-splitting in quantum wires at strong magnetic fields

    Full text link
    A self-consistent treatment of exchange and correlation interactions in a quantum wire (QW) subject to a strong perpendicular magnetic field is presented using a modified local-density approximation (MLDA). The influence of many-body interactions on the spin-splitting between the two lowest Landau levels (LLs) is calculated within the screened Hartree-Fock approximation (SHFA), for filling factor \nu=1, and the strong spatial dependence of the screening properties of electrons is taken into account. In comparison with the Hartree-Fock result, the spatial behavior of the occupied LL in a QW is strongly modified when correlations are included. Correlations caused by screening at the edges strongly suppress the exchange splitting and smoothen the energy dispersion at the edges. The theory accounts well for the experimentally observed strong suppression of the spin-splitting pertinent to the \nu=1 quantum Hall effect (QHE) state as well as the destruction of this state in long, quasi-ballistic GaAlAs/GaAs QWs.Comment: Text 23 pages in Latex/Revtex/preprint format, 6 Postscript figures, submitted to Physical Review

    Anomalous Rashba spin splitting in two-dimensional hole systems

    Full text link
    It has long been assumed that the inversion asymmetry-induced Rashba spin splitting in two-dimensional (2D) systems at zero magnetic field is proportional to the electric field that characterizes the inversion asymmetry of the confining potential. Here we demonstrate, both theoretically and experimentally, that 2D heavy hole systems in accumulation layer-like single heterostructures show the opposite behavior, i.e., a decreasing, but nonzero electric field results in an increasing Rashba coefficient.Comment: 4 pages, 3 figure

    Spin-orbit terms in multi-subband electron systems: A bridge between bulk and two-dimensional Hamiltonians

    Full text link
    We analyze the spin-orbit terms in multi-subband quasi-two-dimensional electron systems, and how they descend from the bulk Hamiltonian of the conduction band. Measurements of spin-orbit terms in one subband alone are shown to give incomplete information on the spin-orbit Hamiltonian of the system. They should be complemented by measurements of inter-subband spin-orbit matrix elements. Tuning electron energy levels with a quantizing magnetic field is proposed as an experimental approach to this problem.Comment: Typos noticed in the published version have been corrected and several references added. Published in the special issue of Semiconductors in memory of V.I. Pere

    Multi-phonon Raman scattering in semiconductor nanocrystals: importance of non-adiabatic transitions

    Full text link
    Multi-phonon Raman scattering in semiconductor nanocrystals is treated taking into account both adiabatic and non-adiabatic phonon-assisted optical transitions. Because phonons of various symmetries are involved in scattering processes, there is a considerable enhancement of intensities of multi-phonon peaks in nanocrystal Raman spectra. Cases of strong and weak band mixing are considered in detail. In the first case, fundamental scattering takes place via internal electron-hole states and is participated by s- and d-phonons, while in the second case, when the intensity of the one-phonon Raman peak is strongly influenced by the interaction of an electron and of a hole with interface imperfections (e. g., with trapped charge), p-phonons are most active. Calculations of Raman scattering spectra for CdSe and PbS nanocrystals give a good quantitative agreement with recent experimental results.Comment: 16 pages, 2 figures, E-mail addresses: [email protected], [email protected], [email protected], accepted for publication in Physical Review

    Landau level mixing and spin degeneracy in the quantum Hall effect

    Full text link
    We study dynamics of electrons in a magnetic field using a network model with two channels per link with random mixing in a random intrachannel potential; the channels represent either two Landau levels or two spin states. We consider channel mixing as function of the energy separation of the two extended states and show that its effect changes from repulsion to attraction as the energy separation increases. For two Landau levels this leads to level floating at low magnetic fields while for Zeeman split spin states we predict level attraction at high magnetic fields, accounting for ESR data. We also study random mixing of two degenerate channels, while the intrachannel potential is periodic (non-random). We find a single extended state with a localization exponent ν1.1\nu\approx 1.1 for real scattering at nodes; the general case has also a single extended state, though the localized nature of nearby states sets in at unusually large scales.Comment: 18 pages, 11 tex-files and 1 ps-file of figure

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Measurement of inclusive two-particle angular correlations in pp collisions with the ATLAS detector at the LHC

    Get PDF
    We present a measurement of two-particle angular correlations in proton- proton collisions at s√=900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum p T  > 100 MeV and pseudorapidity |η| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to pythia 8 and herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of pythia 6. The data are not satisfactorily described by any of these models
    corecore