848 research outputs found
Fingerprinting-Based Positioning in Distributed Massive MIMO Systems
Location awareness in wireless networks may enable many applications such as
emergency services, autonomous driving and geographic routing. Although there
are many available positioning techniques, none of them is adapted to work with
massive multiple-in-multiple-out (MIMO) systems, which represent a leading 5G
technology candidate. In this paper, we discuss possible solutions for
positioning of mobile stations using a vector of signals at the base station,
equipped with many antennas distributed over deployment area. Our main proposal
is to use fingerprinting techniques based on a vector of received signal
strengths. This kind of methods are able to work in highly-cluttered multipath
environments, and require just one base station, in contrast to standard
range-based and angle-based techniques. We also provide a solution for
fingerprinting-based positioning based on Gaussian process regression, and
discuss main applications and challenges.Comment: Proc. of IEEE 82nd Vehicular Technology Conference (VTC2015-Fall
Sum Throughput Maximization in Multi-Tag Backscattering to Multiantenna Reader
Backscatter communication (BSC) is being realized as the core technology for
pervasive sustainable Internet-of-Things applications. However, owing to the
resource-limitations of passive tags, the efficient usage of multiple antennas
at the reader is essential for both downlink excitation and uplink detection.
This work targets at maximizing the achievable sum-backscattered-throughput by
jointly optimizing the transceiver (TRX) design at the reader and
backscattering coefficients (BC) at the tags. Since, this joint problem is
nonconvex, we first present individually-optimal designs for the TRX and BC. We
show that with precoder and {combiner} designs at the reader respectively
targeting downlink energy beamforming and uplink Wiener filtering operations,
the BC optimization at tags can be reduced to a binary power control problem.
Next, the asymptotically-optimal joint-TRX-BC designs are proposed for both low
and high signal-to-noise-ratio regimes. Based on these developments, an
iterative low-complexity algorithm is proposed to yield an efficient
jointly-suboptimal design. Thereafter, we discuss the practical utility of the
proposed designs to other application settings like wireless powered
communication networks and BSC with imperfect channel state information.
Lastly, selected numerical results, validating the analysis and shedding novel
insights, demonstrate that the proposed designs can yield significant
enhancement in the sum-backscattered throughput over existing benchmarks.Comment: 17 pages, 5 figures, accepted for publication in IEEE Transactions on
Communication
PAR-Aware Large-Scale Multi-User MIMO-OFDM Downlink
We investigate an orthogonal frequency-division multiplexing (OFDM)-based
downlink transmission scheme for large-scale multi-user (MU) multiple-input
multiple-output (MIMO) wireless systems. The use of OFDM causes a high
peak-to-average (power) ratio (PAR), which necessitates expensive and
power-inefficient radio-frequency (RF) components at the base station. In this
paper, we present a novel downlink transmission scheme, which exploits the
massive degrees-of-freedom available in large-scale MU-MIMO-OFDM systems to
achieve low PAR. Specifically, we propose to jointly perform MU precoding, OFDM
modulation, and PAR reduction by solving a convex optimization problem. We
develop a corresponding fast iterative truncation algorithm (FITRA) and show
numerical results to demonstrate tremendous PAR-reduction capabilities. The
significantly reduced linearity requirements eventually enable the use of
low-cost RF components for the large-scale MU-MIMO-OFDM downlink.Comment: To appear in IEEE Journal on Selected Areas in Communication
Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems
We show that end-to-end learning of communication systems through deep neural
network (DNN) autoencoders can be extremely vulnerable to physical adversarial
attacks. Specifically, we elaborate how an attacker can craft effective
physical black-box adversarial attacks. Due to the openness (broadcast nature)
of the wireless channel, an adversary transmitter can increase the
block-error-rate of a communication system by orders of magnitude by
transmitting a well-designed perturbation signal over the channel. We reveal
that the adversarial attacks are more destructive than jamming attacks. We also
show that classical coding schemes are more robust than autoencoders against
both adversarial and jamming attacks. The codes are available at [1].Comment: to appear at IEEE Communications Letter
Grant-Free Massive MTC-Enabled Massive MIMO: A Compressive Sensing Approach
A key challenge of massive MTC (mMTC), is the joint detection of device
activity and decoding of data. The sparse characteristics of mMTC makes
compressed sensing (CS) approaches a promising solution to the device detection
problem. However, utilizing CS-based approaches for device detection along with
channel estimation, and using the acquired estimates for coherent data
transmission is suboptimal, especially when the goal is to convey only a few
bits of data.
First, we focus on the coherent transmission and demonstrate that it is
possible to obtain more accurate channel state information by combining
conventional estimators with CS-based techniques. Moreover, we illustrate that
even simple power control techniques can enhance the device detection
performance in mMTC setups.
Second, we devise a new non-coherent transmission scheme for mMTC and
specifically for grant-free random access. We design an algorithm that jointly
detects device activity along with embedded information bits. The approach
leverages elements from the approximate message passing (AMP) algorithm, and
exploits the structured sparsity introduced by the non-coherent transmission
scheme. Our analysis reveals that the proposed approach has superior
performance compared to application of the original AMP approach.Comment: Submitted to IEEE Transactions on Communication
- …