2,908 research outputs found

    Scalable Privacy-Compliant Virality Prediction on Twitter

    Get PDF
    The digital town hall of Twitter becomes a preferred medium of communication for individuals and organizations across the globe. Some of them reach audiences of millions, while others struggle to get noticed. Given the impact of social media, the question remains more relevant than ever: how to model the dynamics of attention in Twitter. Researchers around the world turn to machine learning to predict the most influential tweets and authors, navigating the volume, velocity, and variety of social big data, with many compromises. In this paper, we revisit content popularity prediction on Twitter. We argue that strict alignment of data acquisition, storage and analysis algorithms is necessary to avoid the common trade-offs between scalability, accuracy and privacy compliance. We propose a new framework for the rapid acquisition of large-scale datasets, high accuracy supervisory signal and multilanguage sentiment prediction while respecting every privacy request applicable. We then apply a novel gradient boosting framework to achieve state-of-the-art results in virality ranking, already before including tweet's visual or propagation features. Our Gradient Boosted Regression Tree is the first to offer explainable, strong ranking performance on benchmark datasets. Since the analysis focused on features available early, the model is immediately applicable to incoming tweets in 18 languages.Comment: AffCon@AAAI-19 Best Paper Award; Presented at AAAI-19 W1: Affective Content Analysi

    Perspectives on Bayesian Optimization for HCI

    Get PDF
    In this position paper we discuss optimization in the HCI domain based on our experiences with Bayesian methods for modeling and optimization of audio systems, including challenges related to evaluating, designing, and optimizing such interfaces. We outline and demonstrate how a combined Bayesian modeling and optimization approach provides a flexible framework for integrating various user and content attributes, while also supporting model-based optimization of HCI systems. Finally, we discuss current and future research direction and applications, such as inferring user needs and optimizing interfaces for computer assisted teaching

    Gaussian Integrals

    Get PDF

    A generalization error estimate for nonlinear systems

    Get PDF

    Adaptive Regularization in Neural Network Modeling

    Get PDF
    . In this paper we address the important problem of optimizing regularization parameters in neural network modeling. The suggested optimization scheme is an extended version of the recently presented algorithm [24]. The idea is to minimize an empirical estimate -- like the cross-validation estimate -- of the generalization error with respect to regularization parameters. This is done by employing a simple iterative gradient descent scheme using virtually no additional programming overhead compared to standard training. Experiments with feed-forward neural network models for time series prediction and classification tasks showed the viability and robustness of the algorithm. Moreover, we provided some simple theoretical examples in order to illustrate the potential and limitations of the proposed regularization framework. 1 Introduction Neural networks are flexible tools for time series processing and pattern recognition. By increasing the number of hidden neurons in a 2-layer architec..

    On Optimal Data Split for Generalization Estimation and Model Selection

    Get PDF

    A neural architecture for nonlinear adaptive filtering of time series

    Get PDF
    • ‚Ķ
    corecore