2 research outputs found

    Role of the Aerosol Phase State in Ammonia/Amines Exchange Reactions

    No full text
    The exchange reaction of ammonia in (NH4)2SO4 with an amine and the corresponding reverse reaction of amines in aminium sulfates with ammonia were investigated using an electrodynamic balance coupled with a Raman spectrometer. The temporal changes in particle mass, chemical composition, and phase state were simultaneously monitored. When the salt particles were in an aqueous state at elevated relative humidities (RHs), the exchange of ammonia/amine vapors in the particle phase was reversible. The exchange rates of aqueous particles were in general higher than those of their corresponding solid counterparts. An aqueous phase was essential for the effective displacement of ammonia and amines. Aminium salts in different phase states and with different evaporation characteristics showed remarkably different reaction behaviors in ammonia vapor. The less compact amorphous aminium sulfate solids were more susceptible to ammonia exchange than the crystalline solids. The aminium salts in a liquid state exhibited substantial amine evaporation at <3% RH and formed acidic bisulfate. Under ammonia exposure, these acidic aminium droplets underwent both neutralization and displacement reactions. Stable solid salts containing ammonium, aminium, sulfate, and bisulfate were formed and hindered further reactions. The result suggests that ambient aminium sulfates may be acidic. Overall, the phase states of the ammonium and aminium salt particles crucially determine the heterogeneous reaction rates and final product properties and identities

    Gas−Particle Partitioning of Alcohol Vapors on Organic Aerosols

    No full text
    Single particle levitation using an electrodynamic balance (EDB) has been found to give accurate and direct hygroscopic measurements (gas−particle partitioning of water) for a number of inorganic and organic aerosol systems. In this paper, we extend the use of an EDB to examine the gas−particle partitioning of volatile to semivolatile alcohols, including methanol, n-butanol, n-octanol, and n-decanol, on levitated oleic acid particles. The measured Kp agreed with Pankow’s absorptive partitioning model. At high n-butanol vapor concentrations (103 ppm), the uptake of n-butanol reduced the average molecular-weight of the oleic acid particle appreciably and hence increased the Kp according to Pankow’s equation. Moreover, the hygroscopicity of mixed oleic acid/n-butanol particles was higher than the predictions given by the UNIFAC model (molecular group contribution method) and the ZSR equation (additive rule), presumably due to molecular interactions between the chemical species in the mixed particles. Despite the high vapor concentrations used, these findings warrant further research on the partitioning of atmospheric organic vapors (Kp) near sources and how collectively they affect the hygroscopic properties of organic aerosols
    corecore