344 research outputs found
Recommended from our members
A cognitive architecture for learning in reactive environments
Previous research in machine learning has viewed the process of empirical discovery as search through a space of 'theoretical' terms. In this paper, we propose a problem space for empirical discovery, specifying six complementary operators for defining new terms that ease the statement of empirical laws. The six types of terms include: numeric attributes (such as PV/T); intrinsic properties (such as mass); composite objects (such as pairs of colliding balls); classes of objects (such as acids and alkalis); composite relations (such as chemical reactions); and classes of relations (such as combustion/oxidation). We review existing machine discovery systems in light of this framework, examining which parts of the problem space were, covered by these systems. Finally, we outline an integrated discovery system (IDS) we are constructing that includes all six of the operators and which should be able to discover a broad range of empirical laws
Recommended from our members
A computational theory of motor learning
In this paper we present a computational theory of human motor performance and learning. The theory is implemented as a running AI system called MAGGIE. Given a description of a desired movement as input, the system generates simulated motor behavior as output. The theory states that skills are encoded as motor schemas, which specify the positions and velocities of a limb at selected points in time. Moreover, there exist two natural representations for such knowledge: viewer-centered schemas describe visually perceived behavior, and joint-centered schemas are used to generate behavior. When the model acts upon these two representational formats, they exhibit quite different behavioral characteristics. MAGGIE performs the desired movement within a feedback control paradigm, monitoring for errors and correcting them when it detects them. Learning involves improving the joint-centered schema over many practice trials; this reduces the need for monitoring. The model accounts for a number of well-documented motor phenomena, including the speed-accuracy trade-off and the gradual improvement in performance with practice. It also makes several testable predictions. We close with a discussion of the theory's strengths and weaknesses, along with directions for future research
Recommended from our members
A framework for empirical discovery
Previous research in machine learning has viewed the process of empirical discovery as search through a space of 'theoretical' terms. In this paper, we propose a problem space for empirical discovery, specifying six complementary operators for defining new terms that ease the statement of empirical laws. The six types of terms include: numeric attributes (such as PV/T); intrinsic properties (such as mass); composite objects (such as pairs of colliding balls); classes of objects (such as acids and alkalis); composite relations (such as chemical reactions); and classes of relations (such as combustion/oxidation). We review existing machine discovery systems in light of this framework, examining which parts of the problem space were, covered by these systems. Finally, we outline an integrated discovery system (IDS) we are constructing that includes all six of the operators and which should be able to discover a broad range of empirical laws
Recommended from our members
Methods of conceptual clustering and their relation to numerical taxonomy
Artificial Intelligence (AI) methods for machine learning can be viewed as forms of exploratory data analysis, even though they differ markedly from the statistical methods generally connoted by the term. The distinction between methods of machine learning and statistical data analysis is primarily due to differences in the way techniques of each type represent data and structure within data. That is, methods of machine learning are strongly biased toward symbolic (as opposed to numeric) data representations. We explore this difference within a limited context, devoting the bulk of our paper to the explication of conceptual clustering, an extension to the statistically based methods of numerical taxonomy. In conceptual clustering the formation of object clusters is dependent on the quality of 'higher-level' characterizations, termed concepts, of the clusters. The form of concepts used by existing conceptual clustering systems (sets of necessary and sufficient conditions) is described in some detail. This is followed by descriptions of several conceptual clustering techniques, along with sample output. We conclude with a discussion of how alternative concept representations might enhance the effectiveness of future conceptual clustering systems
Recommended from our members
Approaches to conceptual clustering
Methods for Conceptual Clustering may be explicated in two lights. Conceptual Clustering methods may be viewed as extensions to techniques of numerical taxonomy, a collection of methods developed by social and natural scientists for creating classification schemes over object sets. Alternatively, conceptual clustering may be viewed as a form of learning by observation or concept formation, as opposed to methods of learning from examples or concept identification. In this paper we survey and compare a number of conceptual clustering methods along dimensions suggested by each of these views. The point we most wish to clarify is that conceptual clustering processes can be explicated as being composed of three distinct but inter-dependent subprocesses: the process of deriving a hierarchical classification scheme; the process of aggregating objects into individual classes; and the process of assigning conceptual descriptions to object classes. Each subprocess may be characterized along a number of dimensions related to search, thus facilitating a better understanding of the conceptual clustering process as a whole
Towards an integrated discovery system
Previous research on machine discovery has focused on limited parts of the empirical discovery task. In this paper we describe IDS, an integrated system that addresses both qualitative and quantitative discovery. The program represents its knowledge in terms of qualitative schemas, which it discovers by interacting with a simulated physical environment. Once IDS has formulated a qualitative schema, it uses that schema to design experiments and to constrain the search for quantitative laws. We have carried out preliminary tests in the domain of heat phenomena. In this context the system has discovered both intrinsic properties, such as the melting point of substances, and numeric laws, such as the conservation of mass for objects going through a phase change
Recommended from our members
Chemical discovery as belief revision
In this paper we describe STAHLp, a system that constructs componential models of chemical substances. STAHLp is a descendent of Zytkow and Simon's (1986) STAHL system, and both use chemical reactions and known componential models in order to construct new chemical models. However, STAHLp employs a more unified and effective strategy for recovering from erroneous inferences, based partly on de Kleer's (1984) assumption-based method of belief revision. This involves recording the underlying source beliefs or premises which lead to each inferred reaction or model. Where Zytkow and Simon's system required multiple methods for detecting errors and recovering from them, STAHLp uses a more powerful representation and additional rules which allow a unified method for error detection and recovery. When given the same initial data, the new system constructs the same historically correct models as STAHL, but it has other capabilities as well. In particular, STAHLp can modify data it has been given if this is necessary to achieve consistent models, and then proceed to construct new models based on the revised data
The structure and formation of natural categories
Categorization and concept formation are critical activities of intelligence. These processes and the conceptual structures that support them raise important issues at the interface of cognitive psychology and artificial intelligence. The work presumes that advances in these and other areas are best facilitated by research methodologies that reward interdisciplinary interaction. In particular, a computational model is described of concept formation and categorization that exploits a rational analysis of basic level effects by Gluck and Corter. Their work provides a clean prescription of human category preferences that is adapted to the task of concept learning. Also, their analysis was extended to account for typicality and fan effects, and speculate on how the concept formation strategies might be extended to other facets of intelligence, such as problem solving
- …