2,519 research outputs found

    Realizations of the associahedron and cyclohedron

    Full text link
    We describe many different realizations with integer coordinates for the associahedron (i.e. the Stasheff polytope) and for the cyclohedron (i.e. the Bott-Taubes polytope) and compare them to the permutahedron of type A_n and B_n respectively. The coordinates are obtained by an algorithm which uses an oriented Coxeter graph of type A_n or B_n respectively as only input and which specialises to a procedure presented by J.-L. Loday for a certain orientation of A_n. The described realizations have cambrian fans of type A and B as normal fans. This settles a conjecture of N. Reading for cambrian fans of these types.Comment: v2: 18 pages, 7 figures; updated version has revised introduction and updated Section 4; v3: 21 pages, 2 new figures, added statement (b) in Proposition 1.4. and 1.7 plus extended proof; added references [1], [29], [30]; minor changes with respect to presentatio

    On generalized Kneser hypergraph colorings

    Get PDF
    In Ziegler (2002), the second author presented a lower bound for the chromatic numbers of hypergraphs \KG{r}{\pmb s}{\calS}, "generalized rr-uniform Kneser hypergraphs with intersection multiplicities s\pmb s." It generalized previous lower bounds by Kriz (1992/2000) for the case s=(1,...,1){\pmb s}=(1,...,1) without intersection multiplicities, and by Sarkaria (1990) for \calS=\tbinom{[n]}k. Here we discuss subtleties and difficulties that arise for intersection multiplicities si>1s_i>1: 1. In the presence of intersection multiplicities, there are two different versions of a "Kneser hypergraph," depending on whether one admits hypergraph edges that are multisets rather than sets. We show that the chromatic numbers are substantially different for the two concepts of hypergraphs. The lower bounds of Sarkaria (1990) and Ziegler (2002) apply only to the multiset version. 2. The reductions to the case of prime rr in the proofs Sarkaria and by Ziegler work only if the intersection multiplicities are strictly smaller than the largest prime factor of rr. Currently we have no valid proof for the lower bound result in the other cases. We also show that all uniform hypergraphs without multiset edges can be represented as generalized Kneser hypergraphs.Comment: 9 pages; added examples in Section 2; added reference ([11]), corrected minor typos; to appear in J. Combinatorial Theory, Series

    Cooperation in international environmental negotiations due to a preference for equity

    Get PDF
    This paper demonstrates that cooperation in international environmental negotiations can be explained by preferences for equity. Within a N-country prisoner?s dilemma in which agents can either cooperate or defect, in addition to the standard non-cooperative equilibrium, cooperation of a large fraction or even of all countries can establish a Nash equilibrium. In an emission game, however, where countries can choose their abatement level continuously, equity preferences cannot improve upon the standard inefficient Nash-equilibrium. Finally, in a two stage game on coalition formation, the presence of equity-interested countries increases the coalition size and leads to efficiency gains. Here, even a stable agreement with full cooperation can be reached. --international environmental negotiations,cooperation,equity preference,coalition formation

    Minkowski Decomposition of Associahedra and Related Combinatorics

    Full text link
    Realisations of associahedra with linearly non-isomorphic normal fans can be obtained by alteration of the right-hand sides of the facet-defining inequalities from a classical permutahedron. These polytopes can be expressed as Minkowski sums and differences of dilated faces of a standard simplex as described by Ardila, Benedetti & Doker (2010). The coefficients yIy_I of such a Minkowski decomposition can be computed by M\"obius inversion if tight right-hand sides zIz_I are known not just for the facet-defining inequalities of the associahedron but also for all inequalities of the permutahedron that are redundant for the associahedron. We show for certain families of these associahedra: (a) how to compute tight values zIz_I for the redundant inequalities from the values zIz_I for the facet-defining inequalities; (b) the computation of the values yIy_I of Ardila, Benedetti & Doker can be significantly simplified and at most four values za(I)z_{a(I)}, zb(I)z_{b(I)}, zc(I)z_{c(I)} and zd(I)z_{d(I)} are needed to compute yIy_I; (c) the four indices a(I)a(I), b(I)b(I), c(I)c(I) and d(I)d(I) are determined by the geometry of the normal fan of the associahedron and are described combinatorially; (d) a combinatorial interpretation of the values yIy_I using a labeled nn-gon. This last result is inspired from similar interpretations for vertex coordinates originally described originally by J.-L. Loday and well-known interpretations for the zIz_I-values of facet-defining inequalities.Comment: 30 pages; 21 figures; changed title; minor stylistic change

    On the Importance of Equity in International Climate Policy: An Empirical Analysis

    Get PDF
    Based on unique data from a world-wide survey of agents involved in international climate policy, this paper empirically analyzes the importance of equity in this field. We find that equity issues are considered highly important in international climate negotiations and that the polluter-pays rule and the accompanying poor losers rule are the most widely accepted equity principles. Our econometric analysis shows a strong influence of the economic or emission performance of the agents? country on the importance of equity issues and principles: (i) Equity issues are seen as more important by individuals from G77/China countries or from countries with less current per capita GDP and less future per capita CO2 emissions. (ii) Agents from richer countries are less in favor of incorporating the polluter-pays and the ability-to-pay principle in future international climate agreements. (iii) The poor losers rule is more strongly supported by individuals from G77/China countries or by individuals from countries with less current per capita GDP. While these results are consistent with pure economic self-interest, the support for the egalitarian principle runs contrary to economic intuition: In the long-run, agents from richer countries are more in favor of incorporating the egalitarian principle. Furthermore, the effect of the economic performance variables on the desired degree of incorporating the polluter-pays principle interestingly becomes less significant in the long-run. This indicates that future international climate agreements could possibly be based on a combination of the polluter-pays, the egalitarian, and the poor losers rule. --International Climate Policy,International Environmental Negotiations,Equity Issues,Probit Models

    Advanced nonlinear stability analysis of boiling water nuclear reactors

    Get PDF
    This thesis is concerned with nonlinear analyses of BWR stability behaviour, contributing to a deeper understanding in this field. Despite negative feedback-coefficients of a BWR, there are operational points (OP) at which oscillatory instabilities occur. So far, a comprehensive and an in-depth understanding of the nonlinear BWR stability behaviour are missing, even though the impact of the significant physical parameters is well known. In particular, this concerns parameter regions in which linear stability indicators, like the asymptotic decay ratio, lose their meaning. Nonlinear stability analyses are usually carried out using integral (system) codes, describing the dynamical system by a system of nonlinear partial differential equations (PDE). One aspect of nonlinear BWR stability analyses is to get an overview about different types of nonlinear stability behaviour and to examine the conditions of their occurrence. For these studies the application of system codes alone is inappropriate. Hence, in the context of this thesis, a novel approach to nonlinear BWR stability analyses, called RAM-ROM method, is developed. In the framework of this approach, system codes and reduced order models (ROM) are used as complementary tools to examine the stability characteristics of fixed points and periodic solutions of the system of nonlinear differential equations, describing the stability behaviour of a BWR loop. The main advantage of a ROM, which is a system of ordinary differential equations (ODE), is the possible coupling with specific methods of the nonlinear dynamics. This method reveals nonlinear phenomena in certain regions of system parameters without the need for solving the system of ROM equations. The stability properties of limit cycles generated in Hopf bifurcation points and the conditions of their occurrence are of particular interest. Finally, the nonlinear phenomena predicted by the ROM will be analysed in more details by the system code. Hence, the thesis is not focused on rendering more precisely linear stability indicators like DR. The objective of the ROM development is to develop a model as simple as possible from the mathematical and numerical point of view, while preserving the physics of the BWR stability behaviour. The ODEs of the ROM are deduced from the PDEs describing the dynamics of a BWR. The system of ODEs includes all spatial effects in an approximated (spatial averaged) manner, e.g. the space-time dependent neutron flux is expanded in terms of a complete set of orthogonal spatial neutron flux modes. In order to simulate the stability characteristics of the in-phase and out-of-phase oscillation mode, it is only necessary to take into account the fundamental mode and the first azimuthal mode. The ROM, originally developed at PSI in collaboration with the University of Illinois (PSI-Illinois-ROM), was upgraded in significant points: • Development and implementation of a new calculation methodology for the mode feedback reactivity coefficients (void and fuel temperature reactivity) • Development and implementation of a recirculation loop model; analysis and discussion of its impact on the in-phase and out-of-phase oscillation mode • Development of a novel physically justified approach for the calculation of the ROM input data • Discussion of the necessity of consideration of the effect of subcooled boiling in an approximate manner With the upgraded ROM, nonlinear BWR stability analyses are performed for three OPs (one for NPP Leibstadt (cycle7), one for NPP Ringhals (cycle14) and one for NPP Brunsbüttel (cycle16) for which measuring data of stability tests are available. In this thesis, the novel approach to nonlinear BWR stability analyses is extensively presented for NPP Leibstadt. In particular, the nonlinear analysis is carried out for an operational point (OP), in which an out-of-phase power oscillation has been observed in the scope of a stability test at the beginning of cycle 7 (KKLc7_rec4). The ROM predicts a saddle-node bifurcation of cycles, occurring in the linear stable region, close to the KKLc7_rec4-OP. This result allows a new interpretation of the stability behaviour around the KKLc7_rec4-OP. The results of this thesis confirm that the RAM-ROM methodology is qualified for nonlinear BWR stability analyses.Die vorliegende Dissertation leistet einen Beitrag zum tieferen Verständnis des nichtlinearen Stabilitätsverhaltens von Siedewasserreaktoren (SWR). Trotz der Tatsache, dass in diesem technischen System nur negative innere Rückkopplungskoeffizienten auftreten, können in bestimmten Arbeitspunkten oszillatorische Instabilitäten auftreten. Obwohl relativ gute Kenntnisse über die signifikanten physikalischen Einflussgrößen vorliegen, fehlt bisher ein umfassendes Verständnis des SWR-Stabilitätsverhaltens. Das betrifft insbesondere die Bereiche der Systemparameter, in denen lineare Stabilitätsindikatoren, wie zum Beispiel das asymptotische Decay Ratio (DR), ihren Sinn verlieren. Die nichtlineare Stabilitätsanalyse wird im Allgemeinen mit Systemcodes (nichtlineare partielle Differentialgleichungen, PDG) durchgeführt. Jedoch kann mit Systemcodes kein oder nur ein sehr lückenhafter Überblick über die Typen von nichtlinearen Phänomenen, die in bestimmten System-Parameterbereichen auftreten, erhalten werden. Deshalb wurde im Rahmen der vorliegenden Arbeit eine neuartige Methode (RAM-ROM Methode) zur nichtlinearen SWR-Stabilitätsanalyse erprobt, bei der integrale Systemcodes und sog. vereinfachte SWR-Modelle (ROM) als sich gegenseitig ergänzende Methoden eingesetzt werden, um die Stabilitätseigenschaften von Fixpunkten und periodischen Lösungen (Grenzzyklen) des nichtlinearen Differentialgleichungssystems, welches das Stabilitätsverhalten des SWR beschreibt, zu bestimmen. Das ROM, in denen das dynamische System durch gewöhnliche Differentialgleichungen (GDG) beschrieben wird, kann relativ einfach mit leistungsfähigen Methoden aus der nichtlinearen Dynamik, wie zum Beispiel die semianalytische Bifurkationsanalyse, gekoppelt werden. Mit solchen Verfahren kann, ohne das DG-System explizit lösen zu müssen, ein Überblick über mögliche Typen von stabilen und instabilen oszillatorischen Verhalten des SWR erhalten werden. Insbesondere sind die Stabilitätseigenschaften von Grenzzyklen, die in Hopf-Bifurkationspunkten entstehen, und die Bedingungen, unter denen sie auftreten, von Interesse. Mit dem Systemcode (RAMONA5) werden dann die mit dem ROM vorhergesagten Phänomene in den entsprechenden Parameterbereichen detaillierter untersucht (Validierung des ROM). Die Methodik dient daher nicht der Verfeinerung der Berechnung linearer Stabilitätsindikatoren (wie das DR). Das ROM-Gleichungssystem entsteht aus den PDGs des Systemcodes durch geeignete (nichttriviale) räumliche Mittelung der PDG. Es wird davon ausgegangen, dass die Reduzierung der räumlichen Komplexität die Stabilitätseigenschaften des SWR nicht signifikant verfälschen, da durch geeignete Mittlungsverfahren, räumliche Effekte näherungsweise in den GDGs berücksichtig werden. Beispielsweise wird die raum- und zeitabhängige Neutronenflussdichte nach räumlichen Moden entwickelt, wobei für eine Simulation der Stabilitätseigenschaften der In-phase- und Out-of-Phase-Leistungsoszillationen nur der Fundamentalmode und der erste azimuthale Mode berücksichtigt werden muss. Das ROM, welches ursprünglich am Paul Scherrer Institut (PSI, Schweiz) in Zusammenarbeit mit der Universität Illinois (USA) entwickelt wurde, ist in zwei wesentlichen Punkten erweitert und verbessert worden: • Entwicklung und Implementierung einer neuen Methode zur Berechnung der Rückkopplungsreaktivitäten • Entwicklung und Implementierung eines Modells zur Beschreibung der Rezirkulationsschleife (insbesondere wurde der Einfluss der Rezirkulationsschleife auf den In-Phase-Oszillationszustand und auf den Out-of-Phase-Oszillationszustand untersucht) • Entwicklung einer physikalisch begründeten Methode zur Berechnung der ROM-Inputdaten • Abschätzung des Einflusses des unterkühlten Siedens im Rahmen der ROM-Näherungen Mit dem erweiterten ROM wurden nichtlineare Stabilitätsanalysen für drei Arbeitspunkte (KKW Leibstadt (Zyklus 7) KKW Ringhals (Zyklus 14) und KKW Brunsbüttel (Zyklus 16)), für die Messdaten vorliegen, durchgeführt. In der Dissertationsschrift wird die RAM-ROM Methode ausführlich am Beispiel eines Arbeitspunktes (OP) des KKW Leibstadt (KKLc7_rec4-OP), in dem eine aufklingende regionale Leistungsoszillation bei einem Stabilitätstest gemessen worden ist, demonstriert. Das ROM sagt die Existenz eines Umkehrpunktes (saddle-node bifurcation of cycles, fold-bifurcation) voraus, der sich im linear stabilen Gebiet nahe der Stabilitätsgrenze befindet. Mit diesem ROM-Ergebnis ist eine neue Interpretation der Stabilitätseigenschaften des KKLc7_rec4-OP möglich. Die Resultate der in der Dissertation durchgeführten RAM-ROM Analyse bestätigen, dass das weiterentwickelte ROM für die Analyse des Stabilitätsverhaltens realer Leistungsreaktoren qualifiziert wurde
    • …