3,073 research outputs found
Studying Innovation in Businesses: New Research Possibilities
The rapid pace of globalization and technological change has created demand for more and better analysis to answer key policy questions about the role of businesses in innovation. This demand was codified into law in the America COMPETES Act. However, existing business datasets are not adequate to create an empirically based foundation for policy decisions. This paper argues that the existing IRS data infrastructure could be used in a number of ways to respond to the national imperative. It describes the legal framework within which such a response could take place, and outlines the organizational features that would be required to establish an IRS/researcher partnership. It concludes with a discussion of the role for the research policy community.Business microdata, innovation, confidentiality, researcher access, tax policy
X-CNN: Cross-modal Convolutional Neural Networks for Sparse Datasets
In this paper we propose cross-modal convolutional neural networks (X-CNNs),
a novel biologically inspired type of CNN architectures, treating gradient
descent-specialised CNNs as individual units of processing in a larger-scale
network topology, while allowing for unconstrained information flow and/or
weight sharing between analogous hidden layers of the network---thus
generalising the already well-established concept of neural network ensembles
(where information typically may flow only between the output layers of the
individual networks). The constituent networks are individually designed to
learn the output function on their own subset of the input data, after which
cross-connections between them are introduced after each pooling operation to
periodically allow for information exchange between them. This injection of
knowledge into a model (by prior partition of the input data through domain
knowledge or unsupervised methods) is expected to yield greatest returns in
sparse data environments, which are typically less suitable for training CNNs.
For evaluation purposes, we have compared a standard four-layer CNN as well as
a sophisticated FitNet4 architecture against their cross-modal variants on the
CIFAR-10 and CIFAR-100 datasets with differing percentages of the training data
being removed, and find that at lower levels of data availability, the X-CNNs
significantly outperform their baselines (typically providing a 2--6% benefit,
depending on the dataset size and whether data augmentation is used), while
still maintaining an edge on all of the full dataset tests.Comment: To appear in the 7th IEEE Symposium Series on Computational
Intelligence (IEEE SSCI 2016), 8 pages, 6 figures. Minor revisions, in
response to reviewers' comment
EmBench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices
In recent years, advances in deep learning have resulted in unprecedented
leaps in diverse tasks spanning from speech and object recognition to context
awareness and health monitoring. As a result, an increasing number of
AI-enabled applications are being developed targeting ubiquitous and mobile
devices. While deep neural networks (DNNs) are getting bigger and more complex,
they also impose a heavy computational and energy burden on the host devices,
which has led to the integration of various specialized processors in commodity
devices. Given the broad range of competing DNN architectures and the
heterogeneity of the target hardware, there is an emerging need to understand
the compatibility between DNN-platform pairs and the expected performance
benefits on each platform. This work attempts to demystify this landscape by
systematically evaluating a collection of state-of-the-art DNNs on a wide
variety of commodity devices. In this respect, we identify potential
bottlenecks in each architecture and provide important guidelines that can
assist the community in the co-design of more efficient DNNs and accelerators.Comment: Accepted at MobiSys 2019: 3rd International Workshop on Embedded and
Mobile Deep Learning (EMDL), 201
Learning Bodily and Temporal Attention in Protective Movement Behavior Detection
For people with chronic pain, the assessment of protective behavior during
physical functioning is essential to understand their subjective pain-related
experiences (e.g., fear and anxiety toward pain and injury) and how they deal
with such experiences (avoidance or reliance on specific body joints), with the
ultimate goal of guiding intervention. Advances in deep learning (DL) can
enable the development of such intervention. Using the EmoPain MoCap dataset,
we investigate how attention-based DL architectures can be used to improve the
detection of protective behavior by capturing the most informative temporal and
body configurational cues characterizing specific movements and the strategies
used to perform them. We propose an end-to-end deep learning architecture named
BodyAttentionNet (BANet). BANet is designed to learn temporal and bodily parts
that are more informative to the detection of protective behavior. The approach
addresses the variety of ways people execute a movement (including healthy
people) independently of the type of movement analyzed. Through extensive
comparison experiments with other state-of-the-art machine learning techniques
used with motion capture data, we show statistically significant improvements
achieved by using these attention mechanisms. In addition, the BANet
architecture requires a much lower number of parameters than the state of the
art for comparable if not higher performances.Comment: 7 pages, 3 figures, 2 tables, code available, accepted in ACII 201
Modeling the Resource Requirements of Convolutional Neural Networks on Mobile Devices
Convolutional Neural Networks (CNNs) have revolutionized the research in
computer vision, due to their ability to capture complex patterns, resulting in
high inference accuracies. However, the increasingly complex nature of these
neural networks means that they are particularly suited for server computers
with powerful GPUs. We envision that deep learning applications will be
eventually and widely deployed on mobile devices, e.g., smartphones,
self-driving cars, and drones. Therefore, in this paper, we aim to understand
the resource requirements (time, memory) of CNNs on mobile devices. First, by
deploying several popular CNNs on mobile CPUs and GPUs, we measure and analyze
the performance and resource usage for every layer of the CNNs. Our findings
point out the potential ways of optimizing the performance on mobile devices.
Second, we model the resource requirements of the different CNN computations.
Finally, based on the measurement, pro ling, and modeling, we build and
evaluate our modeling tool, Augur, which takes a CNN configuration (descriptor)
as the input and estimates the compute time and resource usage of the CNN, to
give insights about whether and how e ciently a CNN can be run on a given
mobile platform. In doing so Augur tackles several challenges: (i) how to
overcome pro ling and measurement overhead; (ii) how to capture the variance in
different mobile platforms with different processors, memory, and cache sizes;
and (iii) how to account for the variance in the number, type and size of
layers of the different CNN configurations
Cross-modal Recurrent Models for Weight Objective Prediction from Multimodal Time-series Data
We analyse multimodal time-series data corresponding to weight, sleep and
steps measurements. We focus on predicting whether a user will successfully
achieve his/her weight objective. For this, we design several deep long
short-term memory (LSTM) architectures, including a novel cross-modal LSTM
(X-LSTM), and demonstrate their superiority over baseline approaches. The
X-LSTM improves parameter efficiency by processing each modality separately and
allowing for information flow between them by way of recurrent
cross-connections. We present a general hyperparameter optimisation technique
for X-LSTMs, which allows us to significantly improve on the LSTM and a prior
state-of-the-art cross-modal approach, using a comparable number of parameters.
Finally, we visualise the model's predictions, revealing implications about
latent variables in this task.Comment: To appear in NIPS ML4H 2017 and NIPS TSW 201
Development and integration of Honeywell’s One-Wireless network
The purpose of this project has been to develop upon the Honeywell One-Wireless network in the Murdoch University Pilot Plant and integrate it into the Distributed Control System. This will give future students exposure to developing process control schemes around industrial wireless technology in a small plant setting. Industrial Wireless is still on the cutting edge of technology and it will challenge the status quo in Industry with its many advantages. A brief review of Industrial wireless technology has been included in this thesis report to provide the reader a background to the communications technology. Also included is Honeywell’s One-Wireless Network solution which was used in this project. There, where significant challenges in getting the network operational, and as a result a systematic troubleshooting process was followed. Once the network was operational additional wireless instruments where added to expand the network and set up in the system. From here the One-Wireless network was integrated into the Distributive Control System which operates the pilot plant, this was done using Modbus TCP/IP. To determine the effectiveness of the network a post Radio Frequency assessment was carried out to determine the impact of the network and ensure that it was following best practices. Relevant documentation on the network was developed as a handover for future students to build upon the work carried out
Disqualification of Opinion-Drafting Attorneys under Federal Circuit Standards for Willful Infringement
Article published in the Michigan State University School of Law Student Scholarship Collection
- …