3,073 research outputs found

    Studying Innovation in Businesses: New Research Possibilities

    Get PDF
    The rapid pace of globalization and technological change has created demand for more and better analysis to answer key policy questions about the role of businesses in innovation. This demand was codified into law in the America COMPETES Act. However, existing business datasets are not adequate to create an empirically based foundation for policy decisions. This paper argues that the existing IRS data infrastructure could be used in a number of ways to respond to the national imperative. It describes the legal framework within which such a response could take place, and outlines the organizational features that would be required to establish an IRS/researcher partnership. It concludes with a discussion of the role for the research policy community.Business microdata, innovation, confidentiality, researcher access, tax policy

    X-CNN: Cross-modal Convolutional Neural Networks for Sparse Datasets

    Full text link
    In this paper we propose cross-modal convolutional neural networks (X-CNNs), a novel biologically inspired type of CNN architectures, treating gradient descent-specialised CNNs as individual units of processing in a larger-scale network topology, while allowing for unconstrained information flow and/or weight sharing between analogous hidden layers of the network---thus generalising the already well-established concept of neural network ensembles (where information typically may flow only between the output layers of the individual networks). The constituent networks are individually designed to learn the output function on their own subset of the input data, after which cross-connections between them are introduced after each pooling operation to periodically allow for information exchange between them. This injection of knowledge into a model (by prior partition of the input data through domain knowledge or unsupervised methods) is expected to yield greatest returns in sparse data environments, which are typically less suitable for training CNNs. For evaluation purposes, we have compared a standard four-layer CNN as well as a sophisticated FitNet4 architecture against their cross-modal variants on the CIFAR-10 and CIFAR-100 datasets with differing percentages of the training data being removed, and find that at lower levels of data availability, the X-CNNs significantly outperform their baselines (typically providing a 2--6% benefit, depending on the dataset size and whether data augmentation is used), while still maintaining an edge on all of the full dataset tests.Comment: To appear in the 7th IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2016), 8 pages, 6 figures. Minor revisions, in response to reviewers' comment

    EmBench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices

    Full text link
    In recent years, advances in deep learning have resulted in unprecedented leaps in diverse tasks spanning from speech and object recognition to context awareness and health monitoring. As a result, an increasing number of AI-enabled applications are being developed targeting ubiquitous and mobile devices. While deep neural networks (DNNs) are getting bigger and more complex, they also impose a heavy computational and energy burden on the host devices, which has led to the integration of various specialized processors in commodity devices. Given the broad range of competing DNN architectures and the heterogeneity of the target hardware, there is an emerging need to understand the compatibility between DNN-platform pairs and the expected performance benefits on each platform. This work attempts to demystify this landscape by systematically evaluating a collection of state-of-the-art DNNs on a wide variety of commodity devices. In this respect, we identify potential bottlenecks in each architecture and provide important guidelines that can assist the community in the co-design of more efficient DNNs and accelerators.Comment: Accepted at MobiSys 2019: 3rd International Workshop on Embedded and Mobile Deep Learning (EMDL), 201

    Learning Bodily and Temporal Attention in Protective Movement Behavior Detection

    Get PDF
    For people with chronic pain, the assessment of protective behavior during physical functioning is essential to understand their subjective pain-related experiences (e.g., fear and anxiety toward pain and injury) and how they deal with such experiences (avoidance or reliance on specific body joints), with the ultimate goal of guiding intervention. Advances in deep learning (DL) can enable the development of such intervention. Using the EmoPain MoCap dataset, we investigate how attention-based DL architectures can be used to improve the detection of protective behavior by capturing the most informative temporal and body configurational cues characterizing specific movements and the strategies used to perform them. We propose an end-to-end deep learning architecture named BodyAttentionNet (BANet). BANet is designed to learn temporal and bodily parts that are more informative to the detection of protective behavior. The approach addresses the variety of ways people execute a movement (including healthy people) independently of the type of movement analyzed. Through extensive comparison experiments with other state-of-the-art machine learning techniques used with motion capture data, we show statistically significant improvements achieved by using these attention mechanisms. In addition, the BANet architecture requires a much lower number of parameters than the state of the art for comparable if not higher performances.Comment: 7 pages, 3 figures, 2 tables, code available, accepted in ACII 201

    Modeling the Resource Requirements of Convolutional Neural Networks on Mobile Devices

    Full text link
    Convolutional Neural Networks (CNNs) have revolutionized the research in computer vision, due to their ability to capture complex patterns, resulting in high inference accuracies. However, the increasingly complex nature of these neural networks means that they are particularly suited for server computers with powerful GPUs. We envision that deep learning applications will be eventually and widely deployed on mobile devices, e.g., smartphones, self-driving cars, and drones. Therefore, in this paper, we aim to understand the resource requirements (time, memory) of CNNs on mobile devices. First, by deploying several popular CNNs on mobile CPUs and GPUs, we measure and analyze the performance and resource usage for every layer of the CNNs. Our findings point out the potential ways of optimizing the performance on mobile devices. Second, we model the resource requirements of the different CNN computations. Finally, based on the measurement, pro ling, and modeling, we build and evaluate our modeling tool, Augur, which takes a CNN configuration (descriptor) as the input and estimates the compute time and resource usage of the CNN, to give insights about whether and how e ciently a CNN can be run on a given mobile platform. In doing so Augur tackles several challenges: (i) how to overcome pro ling and measurement overhead; (ii) how to capture the variance in different mobile platforms with different processors, memory, and cache sizes; and (iii) how to account for the variance in the number, type and size of layers of the different CNN configurations

    Cross-modal Recurrent Models for Weight Objective Prediction from Multimodal Time-series Data

    Full text link
    We analyse multimodal time-series data corresponding to weight, sleep and steps measurements. We focus on predicting whether a user will successfully achieve his/her weight objective. For this, we design several deep long short-term memory (LSTM) architectures, including a novel cross-modal LSTM (X-LSTM), and demonstrate their superiority over baseline approaches. The X-LSTM improves parameter efficiency by processing each modality separately and allowing for information flow between them by way of recurrent cross-connections. We present a general hyperparameter optimisation technique for X-LSTMs, which allows us to significantly improve on the LSTM and a prior state-of-the-art cross-modal approach, using a comparable number of parameters. Finally, we visualise the model's predictions, revealing implications about latent variables in this task.Comment: To appear in NIPS ML4H 2017 and NIPS TSW 201

    Development and integration of Honeywell’s One-Wireless network

    Get PDF
    The purpose of this project has been to develop upon the Honeywell One-Wireless network in the Murdoch University Pilot Plant and integrate it into the Distributed Control System. This will give future students exposure to developing process control schemes around industrial wireless technology in a small plant setting. Industrial Wireless is still on the cutting edge of technology and it will challenge the status quo in Industry with its many advantages. A brief review of Industrial wireless technology has been included in this thesis report to provide the reader a background to the communications technology. Also included is Honeywell’s One-Wireless Network solution which was used in this project. There, where significant challenges in getting the network operational, and as a result a systematic troubleshooting process was followed. Once the network was operational additional wireless instruments where added to expand the network and set up in the system. From here the One-Wireless network was integrated into the Distributive Control System which operates the pilot plant, this was done using Modbus TCP/IP. To determine the effectiveness of the network a post Radio Frequency assessment was carried out to determine the impact of the network and ensure that it was following best practices. Relevant documentation on the network was developed as a handover for future students to build upon the work carried out

    Disqualification of Opinion-Drafting Attorneys under Federal Circuit Standards for Willful Infringement

    Get PDF
    Article published in the Michigan State University School of Law Student Scholarship Collection
    corecore