16 research outputs found
Representations of the infinite unitary group from constrained quantization
We attempt to reconstruct the irreducible unitary representations of the
Banach Lie group of all unitary operators on a separable Hilbert
space \H for which is compact, originally found by Kirillov
and Ol'shanskii, through constrained quantization of its coadjoint orbits. For
this purpose the coadjoint orbits are realized as Marsden-Weinstein quotients.
The unconstrained system, given as a Weinstein dual pair, is quantized by a
corresponding Howe dual pair. Constrained quantization is then performed in
replacing the classical procedure of symplectic reduction by the
-algebraic method of Rieffel induction. Reduction and induction have to be
performed with respect to either , which is straightforward, or .
In the latter case one induces from holomorphic discrete series
representations, and the desired result is obtained if one ignores half-forms,
and induces from a \rep, `half' of whose highest weight is shifted relative to
the naive orbit correspondence. This is only possible when \H is
finite-dimensional
Spontaneous Symmetry Breaking in Quantum Systems: Emergence or Reduction?
Beginning with Anderson (1972), spontaneous symmetry breaking (SSB) in infinite quantum systems is often put forward as an example of (asymptotic) emergence in physics, since in theory no finite system should display it.
Even the correspondence between theory and reality is at stake here, since numerous real materials show SSB in their ground states (or equilibrium states at low temperature), although they are finite.
Thus against what is sometimes called `Earman's Principle',
a genuine physical effect (viz. SSB) seems theoretically recovered only in some idealization (namely the thermodynamic limit), disappearing as soon as the the idealization is removed. We review the well-known arguments that (at first sight) no finite system can exhibit SSB, using the formalism of algebraic quantum theory in order to control the thermodynamic limit and unify the description of finite- and infinite-volume systems. Using the striking mathematical analogy between the thermodynamic limit and the classical limit, we show that a similar situation obtains in quantum mechanics (which typically forbids SSB) versus classical mechanics (which allows it).
This discrepancy between formalism and reality is quite similar to the measurement problem, and hence we address it in the same way, adapting an argument of the author and Reuvers (2013) that was originally intended to explain the collapse of the wave-function within conventional quantum mechanics. Namely, exponential sensitivity to (asymmetric) perturbations of the (symmetric) dynamics as the system size increases causes symmetry breaking already in finite but very large quantum systems. This provides continuity between finite- and infinite-volume descriptions of quantum systems featuring SSB and hence restores Earman's Principle (at least in this particularly threatening case)
Bohrification
New foundations for quantum logic and quantum spaces are constructed by
merging algebraic quantum theory and topos theory. Interpreting Bohr's
"doctrine of classical concepts" mathematically, given a quantum theory
described by a noncommutative C*-algebra A, we construct a topos T(A), which
contains the "Bohrification" B of A as an internal commutative C*-algebra. Then
B has a spectrum, a locale internal to T(A), the external description S(A) of
which we interpret as the "Bohrified" phase space of the physical system. As in
classical physics, the open subsets of S(A) correspond to (atomic)
propositions, so that the "Bohrified" quantum logic of A is given by the
Heyting algebra structure of S(A). The key difference between this logic and
its classical counterpart is that the former does not satisfy the law of the
excluded middle, and hence is intuitionistic. When A contains sufficiently many
projections (e.g. when A is a von Neumann algebra, or, more generally, a
Rickart C*-algebra), the intuitionistic quantum logic S(A) of A may also be
compared with the traditional quantum logic, i.e. the orthomodular lattice of
projections in A. This time, the main difference is that the former is
distributive (even when A is noncommutative), while the latter is not.
This chapter is a streamlined synthesis of 0709.4364, 0902.3201, 0905.2275.Comment: 44 pages; a chapter of the first author's PhD thesis, to appear in
"Deep Beauty" (ed. H. Halvorson
The Gelfand spectrum of a noncommutative C*-algebra: a topos-theoretic approach
We compare two influential ways of defining a generalized notion of space.
The first, inspired by Gelfand duality, states that the category of
'noncommutative spaces' is the opposite of the category of C*-algebras. The
second, loosely generalizing Stone duality, maintains that the category of
'pointfree spaces' is the opposite of the category of frames (i.e., complete
lattices in which the meet distributes over arbitrary joins). One possible
relationship between these two notions of space was unearthed by Banaschewski
and Mulvey, who proved a constructive version of Gelfand duality in which the
Gelfand spectrum of a commutative C*-algebra comes out as a pointfree space.
Being constructive, this result applies in arbitrary toposes (with natural
numbers objects, so that internal C*-algebras can be defined). Earlier work by
the first three authors, shows how a noncommutative C*-algebra gives rise to a
commutative one internal to a certain sheaf topos. The latter, then, has a
constructive Gelfand spectrum, also internal to the topos in question. After a
brief review of this work, we compute the so-called external description of
this internal spectrum, which in principle is a fibered pointfree space in the
familiar topos Sets of sets and functions. However, we obtain the external
spectrum as a fibered topological space in the usual sense. This leads to an
explicit Gelfand transform, as well as to a topological reinterpretation of the
Kochen-Specker Theorem of quantum mechanics, which supplements the remarkable
topos-theoretic version of this theorem due to Butterfield and Isham.Comment: 12 page
A topos for algebraic quantum theory
The aim of this paper is to relate algebraic quantum mechanics to topos
theory, so as to construct new foundations for quantum logic and quantum
spaces. Motivated by Bohr's idea that the empirical content of quantum physics
is accessible only through classical physics, we show how a C*-algebra of
observables A induces a topos T(A) in which the amalgamation of all of its
commutative subalgebras comprises a single commutative C*-algebra. According to
the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter
has an internal spectrum S(A) in T(A), which in our approach plays the role of
a quantum phase space of the system. Thus we associate a locale (which is the
topos-theoretical notion of a space and which intrinsically carries the
intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which
is the noncommutative notion of a space). In this setting, states on A become
probability measures (more precisely, valuations) on S(A), and self-adjoint
elements of A define continuous functions (more precisely, locale maps) from
S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to
propositions about the system, the pairing map that assigns a (generalized)
truth value to a state and a proposition assumes an extremely simple
categorical form. Formulated in this way, the quantum theory defined by A is
essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical
Physic
Bohrification of operator algebras and quantum logic
Following Birkhoff and von Neumann, quantum logic has traditionally been
based on the lattice of closed linear subspaces of some Hilbert space, or, more
generally, on the lattice of projections in a von Neumann algebra A.
Unfortunately, the logical interpretation of these lattices is impaired by
their nondistributivity and by various other problems. We show that a possible
resolution of these difficulties, suggested by the ideas of Bohr, emerges if
instead of single projections one considers elementary propositions to be
families of projections indexed by a partially ordered set C(A) of appropriate
commutative subalgebras of A. In fact, to achieve both maximal generality and
ease of use within topos theory, we assume that A is a so-called Rickart
C*-algebra and that C(A) consists of all unital commutative Rickart
C*-subalgebras of A. Such families of projections form a Heyting algebra in a
natural way, so that the associated propositional logic is intuitionistic:
distributivity is recovered at the expense of the law of the excluded middle.
Subsequently, generalizing an earlier computation for n-by-n matrices, we
prove that the Heyting algebra thus associated to A arises as a basis for the
internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the
"Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of
functors from C(A) to the category of sets. We explain the relationship of this
construction to partial Boolean algebras and Bruns-Lakser completions. Finally,
we establish a connection between probability measure on the lattice of
projections on a Hilbert space H and probability valuations on the internal
Gelfand spectrum of A for A = B(H).Comment: 31 page
Intuitionistic quantum logic of an n-level system
A decade ago, Isham and Butterfield proposed a topos-theoretic approach to
quantum mechanics, which meanwhile has been extended by Doering and Isham so as
to provide a new mathematical foundation for all of physics. Last year, three
of the present authors redeveloped and refined these ideas by combining the
C*-algebraic approach to quantum theory with the so-called internal language of
topos theory (see arXiv:0709.4364). The goal of the present paper is to
illustrate our abstract setup through the concrete example of the C*-algebra of
complex n by n matrices. This leads to an explicit expression for the pointfree
quantum phase space and the associated logical structure and Gelfand transform
of an n-level system. We also determine the pertinent non-probabilisitic
state-proposition pairing (or valuation) and give a very natural
topos-theoretic reformulation of the Kochen--Specker Theorem. The essential
point is that the logical structure of a quantum n-level system turns out to be
intuitionistic, which means that it is distributive but fails to satisfy the
law of the excluded middle (both in opposition to the usual quantum logic).Comment: 26 page
A Flea on Schroedinger's Cat
We propose a technical reformulation of the measurement problem of quantum mechanics, which is based on the postulate that the final state of a measurement is classical; this accords with experimental practice as well as with Bohr's views. Unlike the usual formulation (in which the post-measurement state is a a unit vector in Hilbert space, such as a wave-function), our version actually admits a purely technical solution within the confines of conventional quantum theory (as opposed to solutions that either modify this theory, or introduce unusual and controversial interpretative rules and/or ontologies).
To that effect, we recall a remarkable phenomenon in the theory of Schroedinger operators (discovered in 1981 by Jona-Lasinio, Martinelli, and Scoppola), according to which the ground state of a symmetric double-well Hamiltonian (which is paradigmatically of Schroedinger's Cat type) becomes exponentially sensitive to tiny perturbations of the potential as h -> 0. We show that this instability emerges also from the textbook WKB approximation, extend it to time-dependent perturbations, and study the dynamical transition from the ground state of the double well to the perturbed ground state (in which the cat is typically either dead or alive, depending on the details of the perturbation).
Numerical simulations show that, in an individual experiment, certain (especially adiabatically rising) perturbations may (quite literally) cause the collapse of the wavefunction in the classical limit. Thus we combine the technical and conceptual virtues of dynamical collapse models a la GRW (which do solve the measurement problem) with those of decoherence (in that our perturbations come from the environment) without sharing their drawbacks: although single measurement outcomes are obtained (instead of merely diagonal reduced density matrices), no modification of quantum mechanics is needed