1,653 research outputs found

    Transforming gender relations in an ageing world : a policy discussion paper

    Get PDF
    This policy discussion paper explores the way in which intersecting inequalities affect life courses and gender relations in older age. It argues for a gendered lifecourse perspective within the Sustainable Development Goals framework

    An Improved Canine Genome and a Comprehensive Catalogue of Coding Genes and Non-Coding Transcripts

    Get PDF
    The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog ∼175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional ∼3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to ∼20,700 high-confidence protein coding loci, we found ∼4,600 antisense transcripts overlapping exons of protein coding genes, ∼7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs) and ∼11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts

    Chromatin Immunoprecipitation to Analyze DNA Binding Sites of HMGA2

    Get PDF
    BACKGROUND: HMGA2 is an architectonic transcription factor abundantly expressed during embryonic and fetal development and it is associated with the progression of malignant tumors. The protein harbours three basically charged DNA binding domains and an acidic protein binding C-terminal domain. DNA binding induces changes of DNA conformation and hence results in global overall change of gene expression patterns. Recently, using a PCR-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure two consensus sequences for HMGA2 binding have been identified. METHODOLOGY/PRINCIPAL FINDINGS: In this investigation chromatin immunoprecipitation (ChIP) experiments and bioinformatic methods were used to analyze if these binding sequences can be verified on chromatin of living cells as well. CONCLUSION: After quantification of HMGA2 protein in different cell lines the colon cancer derived cell line HCT116 was chosen for further ChIP experiments because of its 3.4-fold higher HMGA2 protein level. 49 DNA fragments were obtained by ChIP. These fragments containing HMGA2 binding sites have been analyzed for their AT-content, location in the human genome and similarities to sequences generated by a SELEX study. The sequences show a significantly higher AT-content than the average of the human genome. The artificially generated SELEX sequences and short BLAST alignments (11 and 12 bp) of the ChIP fragments from living cells show similarities in their organization. The flanking regions are AT-rich, whereas a lower conservation is present in the center of the sequences

    Altered translation of GATA1 in Diamond-Blackfan anemia

    Get PDF
    Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA)[superscript 1, 2], congenital asplenia[superscript 3] and T cell leukemia[superscript 4]. Yet, how mutations in genes encoding ubiquitously expressed proteins such as these result in cell-type– and tissue-specific defects remains unknown[superscript 5]. Here, we identify mutations in GATA1, encoding the critical hematopoietic transcription factor GATA-binding protein-1, that reduce levels of full-length GATA1 protein and cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can lead to decreased GATA1 mRNA translation, possibly resulting from a higher threshold for initiation of translation of this mRNA in comparison with other mRNAs. In primary hematopoietic cells from patients with mutations in RPS19, encoding ribosomal protein S19, the amplitude of a transcriptional signature of GATA1 target genes was globally and specifically reduced, indicating that the activity, but not the mRNA level, of GATA1 is decreased in patients with DBA associated with mutations affecting ribosomal proteins. Moreover, the defective hematopoiesis observed in patients with DBA associated with ribosomal protein haploinsufficiency could be partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations affecting ubiquitous ribosomal proteins can result in human disease.National Institutes of Health (U.S.) (Grant P01 HL32262)National Institutes of Health (U.S.) (Grant U54 HG003067-09

    A comparative genomics multitool for scientific discovery and conservation

    Get PDF
    A whole-genome alignment of 240 phylogenetically diverse species of eutherian mammal-including 131 previously uncharacterized species-from the Zoonomia Project provides data that support biological discovery, medical research and conservation. The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of mammalian families. We find that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity.Peer reviewe

    Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies.

    Get PDF
    The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved

    The landscape of somatic copy-number alteration across human cancers

    Get PDF
    available in PMC 2010 August 18.A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P50CA90578)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109038))National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109467)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA085859)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA 098101)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, K08CA122833

    lincRNAs act in the circuitry controlling pluripotency and differentiation

    Get PDF
    Although thousands of large intergenic non-coding RNAs (lincRNAs) have been identified in mammals, few have been functionally characterized, leading to debate about their biological role. To address this, we performed loss-of-function studies on most lincRNAs expressed in mouse embryonic stem (ES) cells and characterized the effects on gene expression. Here we show that knockdown of lincRNAs has major consequences on gene expression patterns, comparable to knockdown of well-known ES cell regulators. Notably, lincRNAs primarily affect gene expression in trans. Knockdown of dozens of lincRNAs causes either exit from the pluripotent state or upregulation of lineage commitment programs. We integrate lincRNAs into the molecular circuitry of ES cells and show that lincRNA genes are regulated by key transcription factors and that lincRNA transcripts bind to multiple chromatin regulatory proteins to affect shared gene expression programs. Together, the results demonstrate that lincRNAs have key roles in the circuitry controlling ES cell state.Broad InstituteHarvard UniversityNational Human Genome Research Institute (U.S.)Merkin Family Foundation for Stem Cell Researc

    Somatic mutations affect key pathways in lung adenocarcinoma

    Full text link
    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well- classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers - including NF1, APC, RB1 and ATM - and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.National Human Genome Research InstituteWe thank A. Lash, M.F. Zakowski, M.G. Kris and V. Rusch for intellectual contributions, and many members of the Baylor Human Genome Sequencing Center, the Broad Institute of Harvard and MIT, and the Genome Center at Washington University for support. This work was funded by grants from the National Human Genome Research Institute to E.S.L., R.A.G. and R.K.W.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62885/1/nature07423.pd
    • …