30,272 research outputs found
A heuristic approach to the weakly interacting Bose gas
Some thermodynamic properties of weakly interacting Bose systems are derived
from dimensional and heuristic arguments and thermodynamic relations, without
resorting to statistical mechanics
Generalized Emission Functions for Photon Emission from Quark-Gluon Plasma
The Landau-Pomeranchuk-Migdal effects on photon emission from the quark gluon
plasma have been studied as a function of photon mass, at a fixed temperature
of the plasma. The integral equations for the transverse vector function () and the longitudinal function () consisting of multiple scattering effects are solved by the
self consistent iterations method and also by the variational method for the
variable set \{\}, considering the bremsstrahlung and the processes. We define four new dynamical scaling variables,
,,, for bremsstrahlung and {\bf aws} processes and
analyse the transverse and longitudinal components as a function of
\{\}. We generalize the concept of photon emission function and we
define four new emission functions for massive photon emission represented by
, , , . These have been constructed using the exact
numerical solutions of the integral equations. These four emission functions
have been parameterized by suitable simple empirical fits. In terms of these
empirical emission functions, the virtual photon emission from quark gluon
plasma reduces to one dimensional integrals that involve folding over the
empirical functions with appropriate quark distribution
functions and the kinematic factors. Using this empirical emission functions,
we calculated the imaginary part of the photon polarization tensor as a
function of photon mass and energy.Comment: In nuclear physics journals and arxiv listings, my name used to
appear as S.V.S. Sastry. Hereafter, my name will appear as, S.V.
Suryanarayan
Three-dimensional Roton-Excitations and Supersolid formation in Rydberg-excited Bose-Einstein Condensates
We study the behavior of a Bose-Einstein condensate in which atoms are weakly
coupled to a highly excited Rydberg state. Since the latter have very strong
van der Waals interactions, this coupling induces effective, nonlocal
interactions between the dressed ground state atoms, which, opposed to dipolar
interactions, are isotropically repulsive. Yet, one finds partial attraction in
momentum space, giving rise to a roton-maxon excitation spectrum and a
transition to a supersolid state in three-dimensional condensates. A detailed
analysis of decoherence and loss mechanisms suggests that these phenomena are
observable with current experimental capabilities.Comment: 4 pages, 5 figure
A Judge\u27s Perspective on the Use and Misuse of History in State Constitutional Interpretation
Dynamic Structure Factor of Normal Fermi Gas from Collisionless to Hydrodynamic Regime
The dynamic structure factor of a normal Fermi gas is investigated by using
the moment method for the Boltzmann equation. We determine the spectral
function at finite temperatures over the full range of crossover from the
collisionless regime to the hydrodynamic regime. We find that the Brillouin
peak in the dynamic structure factor exhibits a smooth crossover from zero to
first sound as functions of temperature and interaction strength. The dynamic
structure factor obtained using the moment method also exhibits a definite
Rayleigh peak (), which is a characteristic of the hydrodynamic
regime. We compare the dynamic structure factor obtained by the moment method
with that obtained from the hydrodynamic equations.Comment: 19 pages, 9 figure
Phenomenological Analysis of and Elastic Scattering Data in the Impact Parameter Space
We use an almost model-independent analytical parameterization for and
elastic scattering data to analyze the eikonal, profile, and
inelastic overlap functions in the impact parameter space. Error propagation in
the fit parameters allows estimations of uncertainty regions, improving the
geometrical description of the hadron-hadron interaction. Several predictions
are shown and, in particular, the prediction for inelastic overlap
function at TeV shows the saturation of the Froissart-Martin
bound at LHC energies.Comment: 15 pages, 16 figure
3+1D hydrodynamic simulation of relativistic heavy-ion collisions
We present MUSIC, an implementation of the Kurganov-Tadmor algorithm for
relativistic 3+1 dimensional fluid dynamics in heavy-ion collision scenarios.
This Riemann-solver-free, second-order, high-resolution scheme is characterized
by a very small numerical viscosity and its ability to treat shocks and
discontinuities very well. We also incorporate a sophisticated algorithm for
the determination of the freeze-out surface using a three dimensional
triangulation of the hyper-surface. Implementing a recent lattice based
equation of state, we compute p_T-spectra and pseudorapidity distributions for
Au+Au collisions at root s = 200 GeV and present results for the anisotropic
flow coefficients v_2 and v_4 as a function of both p_T and pseudorapidity. We
were able to determine v_4 with high numerical precision, finding that it does
not strongly depend on the choice of initial condition or equation of state.Comment: 16 pages, 11 figures, version accepted for publication in PRC,
references added, minor typos corrected, more detailed discussion of
freeze-out routine adde
Modified Friedman scenario from the Wheeler-DeWitt equation
We consider the possible modification of the Friedman equation due to
operator ordering parameter entering the Wheeler-DeWitt equation.Comment: 2 pages, 1 figur
High-energy gluon bremsstrahlung in a finite medium: harmonic oscillator versus single scattering approximation
A particle produced in a hard collision can lose energy through
bremsstrahlung. It has long been of interest to calculate the effect on
bremsstrahlung if the particle is produced inside a finite-size QCD medium such
as a quark-gluon plasma. For the case of very high-energy particles traveling
through the background of a weakly-coupled quark-gluon plasma, it is known how
to reduce this problem to an equivalent problem in non-relativistic
two-dimensional quantum mechanics. Analytic solutions, however, have always
resorted to further approximations. One is a harmonic oscillator approximation
to the corresponding quantum mechanics problem, which is appropriate for
sufficiently thick media. Another is to formally treat the particle as having
only a single significant scattering from the plasma (known as the N=1 term of
the opacity expansion), which is appropriate for sufficiently thin media. In a
broad range of intermediate cases, these two very different approximations give
surprisingly similar but slightly differing results if one works to leading
logarithmic order in the particle energy, and there has been confusion about
the range of validity of each approximation. In this paper, I sort out in
detail the parametric range of validity of these two approximations at leading
logarithmic order. For simplicity, I study the problem for small alpha_s and
large logarithms but alpha_s log << 1.Comment: 40 pages, 23 figures [Primary change since v1: addition of new
appendix reviewing transverse momentum distribution from multiple scattering
Equilibrium topology of the intermediate state in type-I superconductors of different shapes
High-resolution magneto-optical technique was used to analyze flux patterns
in the intermediate state of bulk Pb samples of various shapes - cones,
hemispheres and discs. Combined with the measurements of macroscopic
magnetization these results allowed studying the effect of bulk pinning and
geometric barrier on the equilibrium structure of the intermediate state.
Zero-bulk pinning discs and slabs show hysteretic behavior due to geometric
barrier that results in a topological hysteresis -- flux tubes on penetration
and lamellae on flux exit. (Hemi)spheres and cones do not have geometric
barrier and show no hysteresis with flux tubes dominating the intermediate
field region. It is concluded that flux tubes represent the equilibrium
topology of the intermediate state in reversible samples, whereas laminar
structure appears in samples with magnetic hysteresis (either bulk or
geometric). Real-time video is available in
http://www.cmpgroup.ameslab.gov/supermaglab/video/Pb.html
NOTE: the submitted images were severely downsampled due to Arxiv's
limitations of 1 Mb total size
- …
