34 research outputs found
Wittgenstein's Programme of a New Logic
The young Wittgenstein called his conception of logic âNew Logicâ and opposed it to
the âOld Logicâ, i.e. Fregeâs and Russellâs systems of logic. In this paper the basic
objects of Wittgensteinâs conception of a New Logic are outlined in contrast to
classical logic. The detailed elaboration of Wittgensteinâs conception depends on the
realization of his ab-notation for first order logic
Wittgenstein on Pseudo-Irrationals, Diagonal Numbers and Decidability
In his early philosophy as well as in his middle period, Wittgenstein holds a purely
syntactic view of logic and mathematics. However, his syntactic foundation of logic
and mathematics is opposed to the axiomatic approach of modern mathematical logic.
The object of Wittgensteinâs approach is not the representation of mathematical properties within a logical axiomatic system, but their representation by a symbolism that identifies the properties in question by its syntactic features. It rests on his distinction of descriptions and operations; its aim is to reduce mathematics to operations. This paper illustrates Wittgensteinâs approach by examining his discussion of irrational numbers
Wittgensteinâs ânotorious paragraphâ about the Gödel Theorem
In §8 of Remarks on the Foundations of Mathematics
(RFM), Appendix 3 Wittgenstein imagines what
conclusions would have to be drawn if the Gödel formula P
or ÂŹP would be derivable in PM. In this case, he says, one
has to conclude that the interpretation of P as âP is
unprovableâ must be given up. This ânotorious paragraphâ
has heated up a debate on whether the point Wittgenstein
has to make is one of âgreat philosophical interestâ
revealing âremarkable insightâ in Gödelâs proof, as Floyd
and Putnam suggest (Floyd (2000), Floyd (2001)), or
whether this remark reveals Wittgensteinâs
misunderstanding of Gödelâs proof as Rodych and Steiner
argued for recently (Rodych (1999, 2002, 2003), Steiner
(2001)). In the following the arguments of both
interpretations will be sketched and some deficiencies will
be identified. Afterwards a detailed reconstruction of
Wittgensteinâs argument will be offered. It will be seen that
Wittgensteinâs argumentation is meant to be a rejection of
Gödelâs proof but that it cannot satisfy this pretension
Semantic Criteria of Correct Formalization
This paper compares several models of formalization. It articulates criteria of correct formalization and identifies their problems. All of the discussed criteria are so called âsemanticâ criteria, which refer to the interpretation of logical formulas. However, as will be shown, different versions of an implicitly applied or explicitly stated criterion of correctness depend on different understandings of âinterpretationâ in this context
A Decision Procedure for Herbrand Formulas without Skolemization
This paper describes a decision procedure for disjunctions of conjunctions of anti-prenex normal forms of pure first-order logic (FOLDNFs) that do not contain V within the scope of quantifiers. The disjuncts of these FOLDNFs are equivalent to prenex normal forms whose quantifier-free parts are conjunctions of atomic and negated atomic formulae (= Herbrand formulae). In contrast to the usual algorithms for Herbrand formulae, neither skolemization nor unification algorithms with function symbols are applied. Instead, a procedure is described that rests on nothing but equivalence transformations within pure first-order logic (FOL). This procedure involves the application of a calculus for negative normal forms (the NNF-calculus) with
A -||- A & A (= &I) as the sole rule that increases the complexity of given FOLDNFs.
The described algorithm illustrates how, in the case of Herbrand formulae,
decision problems can be solved through a systematic search for proofs that
reduce the number of applications of the rule &I to a minimum in the NNF-calculus. In the case of Herbrand formulae, it is even possible to entirely abstain from applying &I.
Finally, it is shown how the described procedure can be used within an optimized general search for proofs of contradiction and what kind of questions arise for a &I-minimal proof strategy in the case of a general search for proofs of contradiction
Newton vs. Goethe
Anhand der genaueren Analyse von Newtons experimentum crucis und der Argumentation, die er auf dieses Experiment stĂŒtzt, sowie Goethes Kritik hieran sollen im Folgenden zwei verbreitete Vorurteile revidiert werden:
1. Newton ist kein Dogmatiker, der methodische AnsprĂŒche vertritt, die er nicht einlösen kann, sondern grĂŒndet seinen Anspruch, experimentelle Beweise fĂŒhren zu können, auf einer vorbildlichen Methodologie kausaler ErklĂ€rungen, was seine Kritiker allerdings ĂŒbersehen.
2. Goethe ist kein Antiwissenschaftler, der einen einzigartigen Kontrapunkt zur vorherrschenden wissenschaftlichen Tradition bildet, sondern steht inmitten traditioneller Auffassungen zur Farbenlehre, deren experimentelle und methodologische Grundlagen bezĂŒglich eines ErklĂ€rungsanspruches denen Newtons unterlegen sind
Grundlagen der Logik und Mathematik: Der Standpunkt Wittgensteins
Es wird gezeigt, dass Wittgenstein in seiner FrĂŒhphilosophie ein nicht-axiomatisches
BeweisverstĂ€ndnis entwickelt, fĂŒr das sich das Problem der BegrĂŒndung der Axiome
nicht stellt. Nach Wittgensteins BeweisverstÀndnis besteht der Beweis einer formalen
Eigenschaft einer Formel â z.B. der logischen Wahrheit einer prĂ€dikatenlogischen
Formel oder der Gleichheit zweier arithmetischer AusdrĂŒcke â in der Transformation
der Formel in eine andere Notation, an deren Eigenschaften sich entscheiden lÀsst, ob
die zu beweisende formale Eigenschaft besteht oder nicht besteht. Dieses VerstÀndnis
grenzt Wittgenstein gegenĂŒber einem axiomatischen BeweisverstĂ€ndnis ab. Sein
BeweisverstÀndnis bedingt ein Programm der Grundlegung der Mathematik, das eine
Alternative zu den AnsÀtzen des Logizismus, Formalismus und Konstruktivismus
darstellt. Wittgensteins Ansatz steht im Widerspruch zu den Ergebnissen der
Metamathematik, da er die Möglichkeit der Formulierung von Entscheidungsverfahren in der PrĂ€dikatenlogik und Arithmetik voraussetzt. Um seinem Ansatz gegenĂŒber der
traditionellen Metamathematik Recht zu geben, mĂŒsste gezeigt werden, dass sein
BeweisverstĂ€ndnis im Bereich der Logik und Arithmetik â der traditionellen
Metamathematik zum Trotz â realisierbar ist
Turing's Fallacies
This paper reveals two fallacies in Turing's undecidability proof of first-order logic (FOL), namely, (i) an 'extensional fallacy': from the fact that a sentence is an instance of a provable FOL formula, it is inferred that a meaningful sentence is proven, and (ii) a 'fallacy of substitution': from the fact that a sentence is an instance of a provable FOL formula, it is inferred that a true sentence is proven. The first fallacy erroneously suggests that Turing's proof of the non-existence of a circle-free machine that decides whether an arbitrary machine is circular proves a significant proposition. The second fallacy suggests that FOL is undecidable