19 research outputs found

    Discussing an extreme mock/what-if scenario over the antarctic peninsula: the effect of intense melt on surface mass balance

    Full text link
    peer reviewedThis discussion paper interprets the findings of a recent study comparing melt estimates from the regional atmospheric model MAR, those derived from Automatic Weather Stations (AWS), and microwave remote sensing images over the Antarctic Peninsula from 2019 to 2021. Our interpretation reveals a paradox: MAR overestimates melt when compared to AWS-based melt estimates, yet underestimates melt when compared to satellite imagery. This discrepancy underscores a fundamental gap in our understanding of surface processes. To illustrate the potential implications of this gap, we present a fictional (“what-if”) scenario that explores an extreme case of melting, based on parametrizations from Kittel et al., 2022, and the outliers of Dethinne et al., 2023. We examine the potential impact on the ice sheet's surface mass balance (SMB), drawing parallels with the situation in Greenland during the 1990s, where increased melt production had cascading effects on SMB. Moreover, we highlight that the presence of liquid water at the surface of the snowpack can be a precursor to significant destabilization processes over ice shelves, although this aspect is not the focus of our current paper. By opening a debate on the accuracy and interpretation of melt modeling, we aim to draw attention to the potential consequences of extreme melting events on the Antarctic Ice Sheet's SMB and stability

    The MAR-NEMO coupling : exploring atmosphere-ocean-ice interactions in the Arctic using high resolution climate models

    Full text link
    The Arctic climate is a major environmental concern as it is experiencing strong changes. Notably, recent Arctic warming drives rapid sea ice loss making the Arctic increasingly vulnerable. To better anticipate the consequences of this strong Arctic warming, it is crucial to better understand the driving processes responsible for large uncertainties in future climate projections. Interactions at the atmosphere-ocean-sea ice interface require particular attention. In this context, the PolarRES project aims at developing the coupled system MAR (atmosphere) - NEMO (ocean-sea ice) over the Arctic region at high spatial resolution (25 km). Such coupling will enable the climate community to access precise data at large scale. Since this coupling has never been applied to the Arctic, a proper model evaluation is required. Here standalone model simulations are compared against a newly compiled dataset including land station data. We find high correlations between the modeled and observed data. Our evaluation marks an important step in in the ongoing development of coupled models

    Assessment of future wind speed and wind power changes over South Greenland using the MAR regional climate model

    Full text link
    peer reviewedWind is an infinitely renewable energy source that is not evenly distributed in space and time. The interconnection of energy-demanding and energy-resourceful (yet remote) regions would help preventing energy scarcity in a world where fossil fuels are no longer used. Previous studies have shown that South Greenland and West Europe have complementary wind regimes. In particular, the southern tip of Greenland, Cape Farewell, has gained growing interest for wind farm development as it is one of the windiest places on Earth. In order to gain new insights about future wind speed variations over South Greenland, the Modèle Atmosphérique Régional (MAR), validated against in situ observations over the tundra where wind turbines are most likely to be installed, is used to built climate projections under the emission scenario SSP5-8.5 by downscaling an ensemble of CMIP6 Earth System Models (ESMs). It appeared that between 1981 and 2100, the wind speed is projected to decrease by ~-0.8 m/s at 100 m a.g.l. over the tundra surrounding Cape Farewell. This decrease is particularly marked in winter while in summer, a wind speed acceleration is projected along the ice sheet margins. An analysis of two-dimensional wind speed changes at different vertical levels indicates that the winter decrease is likely due to a large-scale circulation change while in summer, the katabatic winds flowing down the ice sheet are expected to increase due to an enhanced temperature contrast between the ice sheet and the surroundings. As for the mean annual maximum wind power a turbine can yield, a decrease of ~-178.1 W is projected at 100 m a.g.l. Again, the decrease is especially pronounced in winter. Considering the very high winter wind speeds occurring in South Greenland which can cut off wind turbines if too intense, the projected wind speed decrease might be beneficial for the establishment of wind farms near Cape Farewell

    From species detection to population size indexing : the use of sign surveys for monitoring a rare and otherwise elusive small mammal

    Get PDF
    Funding Information: Open access funding provided by FCT|FCCN (b-on). This study was funded by Fundo Europeu de Desenvolvimento Regional (FEDER) through the Programa Operacional Factores de Competitividade (COMPETE) and national funds through the Portuguese Foundation for Science and Technology (FCT) within the scope of the projects ‘MateFrag’ (PTDC/BIA-BIC/6582/2014) and ‘Agrivole’ (PTDC/BIA-ECO/31728/2017). DP was supported by the FCT grant SFRH/BD/133375/2017. TM was supported by the FCT grant SFRH/BD/145156/2019. PB was supported by EDP Biodiversity Chair. JP was supported by the European Union’s Horizon 2020 research and innovation programme under project EnvMetaGen (grant agreement no 668981). RP was supported by FCT, through a research contract under the Portuguese Decree-Law nr 57/2016.Peer reviewedPublisher PD

    Patch spatial attributes and time to disturbance affect the emergence of source local populations within ephemeral habitats

    Get PDF
    We thank for the computational support provided by the High Performance Computing Chair infrastructure through the supercomputer OBLIVION (University of Évora; PI: M. Avillez). We also thank Nathan Schumaker and one anonymous reviewer for their suggestions to improve the paper.Peer reviewe

    Drivers of survival in a small mammal of conservation concern : An assessment using extensive genetic non-invasive sampling in fragmented farmland

    Get PDF
    This study was supported by the Portuguese Foundation for Science and Technology (FCT) under projects NETPERSIST (PTDC/AAG-MAA/3227/2012) and MATEFRAG (PTDC/BIA-BIC/6582/2014). APF was supported by FCT grant SFRH/BD/109242/2015. JP was supported by the project ‘Genomics and Evolutionary Biology’ co-financed by North Portugal Regional Operational Programme 2007/2013 (ON.2 - O Novo Norte), under the National Strategic Reference Framework, through the ERDF and by the European Union's Horizon 2020 research and innovation programme under project EnvMetaGen (grant agreement no 668981). HSM was supported by FCT grant SFRH/BD/73765/2010. PB was supported by EDP Biodiversity Chair. FM was supported by IF/01053/2015. RP was supported by FCT grants SFRH/BPD/73478/2010 and SFRH/BPD/109235/2015.Peer reviewedPostprin

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    High resolution atmospheric and oceanic modelling over Antarctica: a coupling interface to study sea-ice processes

    Full text link
    Understanding the future evolution of the climate over Antarctica is crucial, as the continent holds the potential for a 3-meter rise in sea levels by 2300. However, the Antarctic climate is impacted by various processes and interactions, particularly at the ocean-atmosphere-sea ice interface, which are not fully implemented in Global Climate Models (GCMs). We are developing a high-resolution two-way coupling between the reginal climate model MARv3.13 and ocean/sea-ice model NEMO4.2/SI3 to study these processes, such as blowing snow over sea-ice, and their potential impact on future polar climate scenarios selected by the PolarRES consortium. We evaluated the standalone models' performance in simulating current climate conditions using various meteorological observations, satellite data, and ship observations. The results of this study are a first step to check the setup before moving to a fully coupled interface, and already show the importance of regional modelling to better resolve specific processes.&#160
    corecore