3,163 research outputs found

    Eliciting Problem Specifications via Large Language Models

    Full text link
    Cognitive systems generally require a human to translate a problem definition into some specification that the cognitive system can use to attempt to solve the problem or perform the task. In this paper, we illustrate that large language models (LLMs) can be utilized to map a problem class, defined in natural language, into a semi-formal specification that can then be utilized by an existing reasoning and learning system to solve instances from the problem class. We present the design of LLM-enabled cognitive task analyst agent(s). Implemented with LLM agents, this system produces a definition of problem spaces for tasks specified in natural language. LLM prompts are derived from the definition of problem spaces in the AI literature and general problem-solving strategies (Polya's How to Solve It). A cognitive system can then use the problem-space specification, applying domain-general problem solving strategies ("weak methods" such as search), to solve multiple instances of problems from the problem class. This result, while preliminary, suggests the potential for speeding cognitive systems research via disintermediation of problem formulation while also retaining core capabilities of cognitive systems, such as robust inference and online learning.Comment: 18 pages, Appendix. Revised in response to reviewer feedback. Accepted for Advances in Cognitive Systems (Jun 2024, Palermo

    Computational-level Analysis of Constraint Compliance for General Intelligence

    Full text link
    Human behavior is conditioned by codes and norms that constrain action. Rules, ``manners,'' laws, and moral imperatives are examples of classes of constraints that govern human behavior. These systems of constraints are ``messy:'' individual constraints are often poorly defined, what constraints are relevant in a particular situation may be unknown or ambiguous, constraints interact and conflict with one another, and determining how to act within the bounds of the relevant constraints may be a significant challenge, especially when rapid decisions are needed. Despite such messiness, humans incorporate constraints in their decisions robustly and rapidly. General, artificially-intelligent agents must also be able to navigate the messiness of systems of real-world constraints in order to behave predictability and reliably. In this paper, we characterize sources of complexity in constraint processing for general agents and describe a computational-level analysis for such \textit{constraint compliance}. We identify key algorithmic requirements based on the computational-level analysis and outline an initial, exploratory implementation of a general approach to constraint compliance.Comment: 10 pages, 2 figures. Accepted for presentation at AGI 2023 (revised in response to reviewer suggestions

    Improving Language Model Prompting in Support of Semi-autonomous Task Learning

    Full text link
    Language models (LLMs) offer potential as a source of knowledge for agents that need to acquire new task competencies within a performance environment. We describe efforts toward a novel agent capability that can construct cues (or "prompts") that result in useful LLM responses for an agent learning a new task. Importantly, responses must not only be "reasonable" (a measure used commonly in research on knowledge extraction from LLMs) but also specific to the agent's task context and in a form that the agent can interpret given its native language capacities. We summarize a series of empirical investigations of prompting strategies and evaluate responses against the goals of targeted and actionable responses for task learning. Our results demonstrate that actionable task knowledge can be obtained from LLMs in support of online agent task learning.Comment: Submitted to ACS 202

    Improving Knowledge Extraction from LLMs for Task Learning through Agent Analysis

    Full text link
    Large language models (LLMs) offer significant promise as a knowledge source for task learning. Prompt engineering has been shown to be effective for eliciting knowledge from an LLM, but alone it is insufficient for acquiring relevant, situationally grounded knowledge for an embodied agent learning novel tasks. We describe a cognitive-agent approach, STARS, that extends and complements prompt engineering, mitigating its limitations and thus enabling an agent to acquire new task knowledge matched to its native language capabilities, embodiment, environment, and user preferences. The STARS approach is to increase the response space of LLMs and deploy general strategies, embedded within the autonomous agent, to evaluate, repair, and select among candidate responses produced by the LLM. We describe the approach and experiments that show how an agent, by retrieving and evaluating a breadth of responses from the LLM, can achieve 77-94% task completion in one-shot learning without user oversight. The approach achieves 100% task completion when human oversight (such as an indication of preference) is provided. Further, the type of oversight largely shifts from explicit, natural language instruction to simple confirmation/discomfirmation of high-quality responses that have been vetted by the agent before presentation to a user.Comment: 7 pages, 8 figures, 3 tables, bibliography, appendix (34 pages total). Accepted to AAAI 202

    Learning in Tele-autonomous Systems using Soar

    Get PDF
    Robo-Soar is a high-level robot arm control system implemented in Soar. Robo-Soar learns to perform simple block manipulation tasks using advice from a human. Following learning, the system is able to perform similar tasks without external guidance. Robo-Soar corrects its knowledge by accepting advice about relevance of features in its domain, using a unique integration of analytic and empirical learning techniques

    Robo-Soar: An Integration of External Interaction, Planning, and Learning using Soar

    Get PDF
    This chapter reports progress in extending the Soar architecture to tasks that involve interaction with external environments. The tasks are performed using a Puma arm and a camera in a system called Robo-Soar. The tasks require the integration of a variety of capabilities including problem solving with incomplete knowledge, reactivity, planning, guidance from external advice, and learning to improve the efficiency and correctness of problem solving. All of these capabilities are achieved without the addition of special purpose modules or subsystems to Soar

    On Unified Theories of Cognition: a response to the reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30999/1/0000674.pd

    Knowledge-directed Adaptation in Multi-level Agents

    Full text link
    Most work on adaptive agents have a simple, single layerarchitecture. However, most agent architectures support three levels ofknowledge and control: a reflex level for reactive responses, a deliberatelevel for goal-driven behavior, and a reflective layer for deliberateplanning and problem decomposition. In this paper we explore agentsimplemented in Soar that behave and learn at the deliberate and reflectivelevels. These levels enhance not only behavior, but also adaptation. Theagents use a combination of analytic and empirical learning, drawing from avariety of sources of knowledge to adapt to their environment. We hypothesize that complete, adaptive agents must be able to learn across all three levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46502/1/10844_2004_Article_146932.pd
    • …
    corecore