5,009 research outputs found

    Re-derived overclosure bound for the inert doublet model

    Get PDF
    We apply a formalism accounting for thermal effects (such as modified Sommerfeld effect; Salpeter correction; decohering scatterings; dissociation of bound states), to one of the simplest WIMP-like dark matter models, associated with an "inert" Higgs doublet. A broad temperature range T ~ M/20...M/10^4 is considered, stressing the importance and less-understood nature of late annihilation stages. Even though only weak interactions play a role, we find that resummed real and virtual corrections increase the tree-level overclosure bound by 1...18%, depending on quartic couplings and mass splittings.Comment: 29 pages. v2: clarifications added, published versio

    Mesonic screening masses at high temperature and finite density

    Get PDF
    We compute the first perturbative correction to the static correlation lengths of light quark bilinears in hot QCD with finite quark chemical potentials. The correction is small and positive, with mu-dependence depending on the relative sign of chemical potentials and the number of dynamical flavors. The computation is carried out using a three-dimensional effective theory for the lowest fermionic Matsubara mode. We also compute the full correlator in free theory and find a rather complicated general mu-dependence at shorter distances. Finally, rough comparisons with lattice simulations are discussed.Comment: 24 pages, 5 figures, JHEP style. Minor corrections and clarifications, version to appear in JHE

    Debye mass from domainwalls and dimensionally reduced phase diagram

    Get PDF
    To measure the Debye mass in dimensionally reduced QCD for Nc≀3N_c\le 3 we replace in the correlator of two Polyakov loops one of the loops by a wall triggered by a dimensionally reduced twist. The phase diagram for Nc=3N_c=3 has R-parity broken in part of the Higgs phase.Comment: LATTICE98(hightemp

    Lack of Interaction between the Dust Grains and the Anomalous Radio Jet in the Nearby Spiral Galaxy NGC 4258

    Get PDF
    We obtained Spitzer/IRAC 3.6-8 micron images of the nearby spiral galaxy NGC 4258 to study possible interactions between dust and the radio jet. In our analysis we also included high-resolution radio continuum, H-alpha, CO, and X-ray data. Our data reveal that the 8 micron emission, believed to originate largely from PAH molecules and hot dust, is an excellent tracer of the normal spiral structure in NGC 4258, and hence it originates from the galactic plane. We investigated the possibility of dust destruction by the radio jet by calculating correlation coefficients between the 8 micron and radio continuum emissions along the jet in two independent ways, namely (i) from wavelet-transformed maps of the original images at different spatial scales, and (ii) from one-dimensional intensity cuts perpendicular to the projected path of the radio jet on the sky. No definitive sign of a correlation (or anticorrelation) was detected on relevant spatial scales with either approach, implying that any dust destruction must take place at spatial scales that are not resolved by our observations.Comment: Accepted for publication in the Astronomical Journal (11 pages, 10 figures, 1 table

    Heavy quark medium polarization at next-to-leading order

    Full text link
    We compute the imaginary part of the heavy quark contribution to the photon polarization tensor, i.e. the quarkonium spectral function in the vector channel, at next-to-leading order in thermal QCD. Matching our result, which is valid sufficiently far away from the two-quark threshold, with a previously determined resummed expression, which is valid close to the threshold, we obtain a phenomenological estimate for the spectral function valid for all non-zero energies. In particular, the new expression allows to fix the overall normalization of the previous resummed one. Our result may be helpful for lattice reconstructions of the spectral function (near the continuum limit), which necessitate its high energy behaviour as input, and can in principle also be compared with the dilepton production rate measured in heavy ion collision experiments. In an appendix analogous results are given for the scalar channel.Comment: 43 pages. v2: a figure and other clarifications added, published versio

    CO Distribution and Kinematics Along the Bar in the Strongly Barred Spiral NGC 7479

    Get PDF
    We report on the 2.5 arcsec (400 pc) resolution CO (J = 1 -> 0) observations covering the whole length of the bar in the strongly barred late-type spiral galaxy NGC 7479. CO emission is detected only along a dust lane that traverses the whole length of the bar, including the nucleus. The emission is strongest in the nucleus. The distribution of emission is clumpy along the bar outside the nucleus, and consists of gas complexes that are unlikely to be gravitationally bound. The CO kinematics within the bar consist of two separate components. A kinematically distinct circumnuclear disk, < 500 pc in diameter, is undergoing predominantly circular motion with a maximum rotational velocity of 245 km/s at a radius of 1 arcsec (160 pc). The CO-emitting gas in the bar outside the circumnuclear disk has substantial noncircular motions which are consistent with a large radial velocity component, directed inwards. The CO emission has a large velocity gradient across the bar dust lane, ranging from 0.5 to 1.9 km/s/pc after correcting for inclination, and the projected velocity change across the dust lane is as high as 200 km/s. This sharp velocity gradient is consistent with a shock front at the location of the bar dust lane. A comparison of H-alpha and CO kinematics across the dust lane shows that although the H-alpha emission is often observed both upstream and downstream from the dust lane, the CO emission is observed only where the velocity gradient is large. We also compare the observations with hydrodynamic models and discuss star formation along the bar.Comment: 16 pages, including 10 figures. Accepted for publication in Ap
    • 

    corecore