441 research outputs found
Italian string quartets and late eighteenth-century London: publication and production. With a critical edition of the quartets opp. 2 and 7 by Venanzio Rauzzini (1746-1810)
This dissertation presents an overview of the situation of the printed string quartet output in London in the years between 1765 (year of publication of Gaetano Latilla's set) and 1790 (year of publication of last set of quartets by Felice Giardini). Between these years the London publishers printed about one hundred string quartets by musicians operating within or at the margins of the King's Theatre environment. Many of them were opera composers, several were prominent violinists and some of them were singers, as in the case of Venanzio Rauzzini (1746-1810), who published two set of six string quartets. I consider Rauzzini's quartets as highly representative of the whole Italian output for their structure, their destination, their publication history and their simple, light and domestic sensibility. While focusing on Rauzzini's quartets, I take into consideration the publishing market in London and its relations with the continental production, with particular reference to the local Italian publishing industry in the main centres of Venice and Florence I describe how the vibrant London market stimulated the establishment of a network of Italian publishing companies, aimed at satisfying the requests of the local aristocracy and of the foreigners who were visiting Italy during their Grand Tour, eager to get acquainted with everything that represented Italy in a number of artistic expressions.
Italian string quartet production has suffered neglect in the modern musicological world, due to the prominence of the Austro-German tradition represented by Haydn and his pupil Pleyel, and later on by Mozart and Beethoven. The Italian output, often considered by scholars as a byproduct of the opera system and a less fortunate sibling of its transalpine counterpart, was indeed a distinct genre, with specific features that were consciously cultivated by the Italian composers who were, in some cases, openly critical towards the 'new wave' of German compositions
CT colonography: can we achieve an adequate bowel preparation without diet restriction?
ObjectiveTo evaluate if an adequate bowel preparation for CT colonography, can be achieved without diet restriction, using a reduced amount of cathartic agent and fecal tagging. To investigate the influence of patients' characteristics on bowel preparation and the impact on patients' compliance.MethodsIn total, 1446 outpatients scheduled for elective CT colonography were prospectively enrolled. All patients had the same bowel preparation based on a reduced amount of cathartic agent (120 g of macrogol in 1.5 l of water) the day before the exam and a fecal tagging agent (60 ml of hyperosmolar oral iodinated agent) the day of the exam. No dietary restrictions were imposed before the exam. The bowel preparation was evaluated using a qualitative and quantitative score. Patients were grouped by age, gender, and presence of diverticula in both scores. Patients' compliance has been evaluated with a questionnaire after the end of the exam and with a phone-calling interview the day after the exam.ResultsAccording to the qualitative score, adequate bowel preparation was achieved in 1349 patients (93.29%) and no statistical differences were observed among the subgroups of patients. Quantitative scores demonstrated that colon distension was significantly better in younger patients and without diverticula. A good patients' compliance was observed and most patients (96.5%) were willing to repeat it.ConclusionsThe lack of diet restriction does not affect the quality of CTC preparation and good patient's compliance could potentially increase the participation rate in CRC screening programs
ICAROGW: A python package for inference of astrophysical population properties of noisy, heterogeneous and incomplete observations
We present icarogw 2.0, a pure CPU/GPU python code developed to infer
astrophysical and cosmological population properties of noisy, heterogeneous,
and incomplete observations. icarogw 2.0 is mainly developed for compact binary
coalescence (CBC) population inference with gravitational wave (GW)
observations. The code contains several models for masses, spins, and redshift
of CBC distributions, and is able to infer population distributions as well as
the cosmological parameters and possible general relativity deviations at
cosmological scales. We present the theoretical and computational foundations
of icarogw, and we describe how the code can be employed for population and
cosmological inference using (i) only GWs, (ii) GWs and galaxy surveys and
(iii) GWs with electromagnetic counterparts. Although icarogw 2.0 has been
developed for GW science, we also describe how the code can be used for any
physical and astrophysical problem involving observations from noisy data in
the presence of selection biases. With this paper, we also release tutorials on
Zenodo.Comment: 33 pages, code available at
(https://github.com/simone-mastrogiovanni/icarogw), tutorials available at
(https://zenodo.org/record/7846415#.ZG0l0NJBxQo
Development and validation of artificial-intelligence-based radiomics model using computed tomography features for preoperative risk stratification of gastrointestinal stromal tumors
Background: preoperative risk assessment of gastrointestinal stromal tumors (GISTS) is required for optimal and personalized treatment planning. Radiomics features are promising tools to predict risk assessment. The purpose of this study is to develop and validate an artificial intelligence classification algorithm, based on CT features, to define GIST's prognosis as determined by the Miettinen classification. Methods: patients with histological diagnosis of GIST and CT studies were retrospectively enrolled. Eight morphologic and 30 texture CT features were extracted from each tumor and combined to obtain three models (morphologic, texture and combined). Data were analyzed using a machine learning classification (WEKA). For each classification process, sensitivity, specificity, accuracy and area under the curve were evaluated. Inter- and intra-reader agreement were also calculated. Results: 52 patients were evaluated. In the validation population, highest performances were obtained by the combined model (SE 85.7%, SP 90.9%, ACC 88.8%, and AUC 0.954) followed by the morphologic (SE 66.6%, SP 81.8%, ACC 76.4%, and AUC 0.742) and texture (SE 50%, SP 72.7%, ACC 64.7%, and AUC 0.613) models. Reproducibility was high of all manual evaluations. Conclusions: the AI-based radiomics model using a CT feature demonstrates good predictive performance for preoperative risk stratification of GISTs
Joint population and cosmological properties inference with gravitational waves standard sirens and galaxy surveys
Gravitational wave (GW) sources at cosmological distances can be used to probe the expansion rate of the Universe. GWs directly provide a distance estimation of the source but no direct information on its redshift. The optimal scenario to obtain a redshift is through the direct identification of an electromagnetic (EM) counterpart and its host galaxy. With almost 100 GW sources detected without EM counterparts (dark sirens), it is becoming crucial to have statistical techniques able to perform cosmological studies in the absence of EM emission. Currently, only two techniques for dark sirens are used on GW observations; the spectral siren method, which is based on the source-frame mass distribution to estimate conjointly cosmology and the source’s merger rate, and the galaxy survey method, which uses galaxy surveys to assign a probabilistic redshift to the source while fitting cosmology. It has been recognized, however, that these two methods are two sides of the same coin. In this paper, we present a novel approach to unify these two methods. We apply this approach to several observed GW events using the glade+ galaxy catalog discussing limiting cases. We provide estimates of the Hubble constant, modified gravity propagation effects, and population properties for binary black holes. We also estimate the binary black hole merger rate per galaxy to be 10−6–10−5  yr−1 depending on the galaxy catalog hypotheses
Calibration of advanced Virgo and reconstruction of the detector strain h( t) during the observing run O3
The three advanced Virgo and LIGO gravitational wave detectors participated to the third observing run (O3) between 1 April 2019 15:00 UTC and 27 March 2020 17:00 UTC, leading to several gravitational wave detections per month. This paper describes the advanced Virgo detector calibration and the reconstruction of the detector strain h(t) during O3, as well as the estimation of the associated uncertainties. For the first time, the photon calibration technique as been used as reference for Virgo calibration, which allowed to cross-calibrate the strain amplitude of the Virgo and LIGO detectors. The previous reference, so-called free swinging Michelson technique, has still been used but as an independent cross-check. h(t) reconstruction and noise subtraction were processed online, with good enough quality to prevent the need for offline reprocessing, except for the two last weeks of September 2019. The uncertainties for the reconstructed h(t) strain, estimated in this paper in a 20-2000 Hz frequency band, are frequency independent: 5% in amplitude, 35 mrad in phase and 10 μs in timing, with the exception of larger uncertainties around 50 Hz
Advanced Virgo Plus: Future Perspectives
While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli
Virgo Detector Characterization and Data Quality: results from the O3 run
The Advanced Virgo detector has contributed with its data to the rapid growth
of the number of detected gravitational-wave (GW) signals in the past few
years, alongside the two Advanced LIGO instruments. First during the last month
of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact
binary mergers GW170814 and GW170817), and then during the full Observation Run
3 (O3): an 11-months data taking period, between April 2019 and March 2020,
that led to the addition of about 80 events to the catalog of transient GW
sources maintained by LIGO, Virgo and now KAGRA. These discoveries and the
manifold exploitation of the detected waveforms require an accurate
characterization of the quality of the data, such as continuous study and
monitoring of the detector noise sources. These activities, collectively named
{\em detector characterization and data quality} or {\em DetChar}, span the
whole workflow of the Virgo data, from the instrument front-end hardware to the
final analyses. They are described in details in the following article, with a
focus on the results achieved by the Virgo DetChar group during the O3 run.
Concurrently, a companion article describes the tools that have been used by
the Virgo DetChar group to perform this work.Comment: 57 pages, 18 figures. To be submitted to Class. and Quantum Grav.
This is the "Results" part of preprint arXiv:2205.01555 [gr-qc] which has
been split into two companion articles: one about the tools and methods, the
other about the analyses of the O3 Virgo dat
- …