55,706 research outputs found

    AutoEncoder Inspired Unsupervised Feature Selection

    Full text link
    High-dimensional data in many areas such as computer vision and machine learning tasks brings in computational and analytical difficulty. Feature selection which selects a subset from observed features is a widely used approach for improving performance and effectiveness of machine learning models with high-dimensional data. In this paper, we propose a novel AutoEncoder Feature Selector (AEFS) for unsupervised feature selection which combines autoencoder regression and group lasso tasks. Compared to traditional feature selection methods, AEFS can select the most important features by excavating both linear and nonlinear information among features, which is more flexible than the conventional self-representation method for unsupervised feature selection with only linear assumptions. Experimental results on benchmark dataset show that the proposed method is superior to the state-of-the-art method.Comment: accepted by ICASSP 201

    Efficient Batch Query Answering Under Differential Privacy

    Full text link
    Differential privacy is a rigorous privacy condition achieved by randomizing query answers. This paper develops efficient algorithms for answering multiple queries under differential privacy with low error. We pursue this goal by advancing a recent approach called the matrix mechanism, which generalizes standard differentially private mechanisms. This new mechanism works by first answering a different set of queries (a strategy) and then inferring the answers to the desired workload of queries. Although a few strategies are known to work well on specific workloads, finding the strategy which minimizes error on an arbitrary workload is intractable. We prove a new lower bound on the optimal error of this mechanism, and we propose an efficient algorithm that approaches this bound for a wide range of workloads.Comment: 6 figues, 22 page
    corecore