52 research outputs found
Little String Theory from Double-Scaling Limits of Field Theories
We show that little string theory on S^5 can be obtained as double-scaling
limits of the maximally supersymmetric Yang-Mills theories on RxS^2 and
RxS^3/Z_k. By matching the gauge theory parameters with those in the gravity
duals found by Lin and Maldacena, we determine the limits in the gauge theories
that correspond to decoupling of NS5-brane degrees of freedom. We find that for
the theory on RxS^2, the 't Hooft coupling must be scaled like ln^3(N), and on
RxS^3/Z_k, like ln^2(N). Accordingly, taking these limits in these field
theories gives Lagrangian definitions of little string theory on S^5.Comment: 16 pages, 5 figures. Minor change
Radiative capture and electromagnetic dissociation involving loosely bound nuclei: the B example
Electromagnetic processes in loosely bound nuclei are investigated using an
analytical model. In particular, electromagnetic dissociation of B is
studied and the results of our analytical model are compared to numerical
calculations based on a three-body picture of the B bound state. The
calculation of energy spectra is shown to be strongly model dependent. This is
demonstrated by investigating the sensitivity to the rms intercluster distance,
the few-body behavior, and the effects of final state interaction. In contrast,
the fraction of the energy spectrum which can be attributed to E1 transitions
is found to be almost model independent at small relative energies. This
finding is of great importance for astrophysical applications as it provides us
with a new tool to extract the E1 component from measured energy spectra. An
additional, and independent, method is also proposed as it is demonstrated how
two sets of experimental data, obtained with different beam energy and/or
minimum impact parameter, can be used to extract the E1 component.Comment: Submitted to Phys. Rev. C. 10 pages, 7 figure
Bound state spectra of three-body muonic molecular ions
The results of highly accurate calculations are presented for all twenty-two
known bound and states in the six
three-body muonic molecular ions and
. A number of bound state properties of these muonic molecular ions have
been determined numerically to high accuracy. The dependence of the total
energies of these muonic molecules upon particle masses is considered. We also
discuss the current status of muon-catalysis of nuclear fusion reactions.Comment: This is the final version. All `techical' troubles with the
Latex-file have been resolved. A few misprints/mistakes in the text were
correcte
- …