227 research outputs found

    Discrete space-time geometry and skeleton conception of particle dynamics

    Full text link
    It is shown that properties of a discrete space-time geometry distinguish from properties of the Riemannian space-time geometry. The discrete geometry is a physical geometry, which is described completely by the world function. The discrete geometry is nonaxiomatizable and multivariant. The equivalence relation is intransitive in the discrete geometry. The particles are described by world chains (broken lines with finite length of links), because in the discrete space-time geometry there are no infinitesimal lengths. Motion of particles is stochastic, and statistical description of them leads to the Schr\"{o}dinger equation, if the elementary length of the discrete geometry depends on the quantum constant in a proper way.Comment: 22 pages, 0 figure

    Effect of halo modelling on WIMP exclusion limits

    Get PDF
    WIMP direct detection experiments are just reaching the sensitivity required to detect galactic dark matter in the form of neutralinos. Data from these experiments are usually analysed under the simplifying assumption that the Milky Way halo is an isothermal sphere with maxwellian velocity distribution. Observations and numerical simulations indicate that galaxy halos are in fact triaxial and anisotropic. Furthermore, in the cold dark matter paradigm galactic halos form via the merger of smaller subhalos, and at least some residual substructure survives. We examine the effect of halo modelling on WIMP exclusion limits, taking into account the detector response. Triaxial and anisotropic halo models, with parameters motivated by observations and numerical simulations, lead to significant changes which are different for different experiments, while if the local WIMP distribution is dominated by small scale clumps then the exclusion limits are changed dramatically.Comment: 9 pages, 9 figures, version to appear in Phys. Rev. D, minor change

    Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients

    Get PDF
    Background: To quantify the association between effects of interventions on carotid intima-media thickness (cIMT) progression and their effects on cardiovascular disease (CVD) risk. Methods: We systematically collated data from randomized, controlled trials. cIMT was assessed as the mean value at the common-carotid-artery; if unavailable, the maximum value at the common-carotid-artery or other cIMT measures were used. The primary outcome was a combined CVD end point defined as myocardial infarction, stroke, revascularization procedures, or fatal CVD. We estimated intervention effects on cIMT progression and incident CVD for each trial, before relating the 2 using a Bayesian meta-regression approach. Results: We analyzed data of 119 randomized, controlled trials involving 100 667 patients (mean age 62 years, 42% female). Over an average follow-up of 3.7 years, 12 038 patients developed the combined CVD end point. Across all interventions, each 10 μm/y reduction of cIMT progression resulted in a relative risk for CVD of 0.91 (95% Credible Interval, 0.87–0.94), with an additional relative risk for CVD of 0.92 (0.87–0.97) being achieved independent of cIMT progression. Taken together, we estimated that interventions reducing cIMT progression by 10, 20, 30, or 40 μm/y would yield relative risks of 0.84 (0.75–0.93), 0.76 (0.67–0.85), 0.69 (0.59–0.79), or 0.63 (0.52–0.74), respectively. Results were similar when grouping trials by type of intervention, time of conduct, time to ultrasound follow-up, availability of individual-participant data, primary versus secondary prevention trials, type of cIMT measurement, and proportion of female patients. Conclusions: The extent of intervention effects on cIMT progression predicted the degree of CVD risk reduction. This provides a missing link supporting the usefulness of cIMT progression as a surrogate marker for CVD risk in clinical trials

    Measurements of the production cross-section for a Z boson in association with b- or c-jets in proton–proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the production cross-section of a Z boson in association with bor c-jets, in proton–proton collisions at √s = 13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb−1. Inclusive and differential cross-sections are measured for events containing a Z boson decaying into electrons or muons and produced in association with at least one b-jet, at least one c-jet, or at least two b-jets with transverse momentum pT > 20 GeV and rapidity |y| < 2.5. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected Z+ ≥ 1 c-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions

    Software performance of the ATLAS track reconstruction for LHC run 3