24 research outputs found
Thermodynamic properties of thin films of superfluid 3He-A
The pairing correlations in superfluid He-3 are strongly modified by
quasiparticle scattering off a surface or an interface. We present theoretical
results and predictions for the order parameter, the quasiparticle excitation
spectrum and the free energy for thin films of superfluid He-3. Both specular
and diffuse scattering by a substrate are considered, while the free surface is
assumed to be a perfectly reflecting specular boundary. The results are based
on self-consistent calculations of the order parameter and quasiparticle
excitation spectrum at zero pressure. We obtain new results for the phase
diagram, free energy, entropy and specific heat of thin films of superfluid
He-3.Comment: Replaced with an updated versio
Subharmonic gap structure in d-wave superconductors
We present a self-consistent theory of current-voltage characteristics of
d-wave/d-wave contacts at arbitrary transparency. In particular, we address the
open problem of the observation of subharmonic gap structure (SGS) in cuprate
junctions. Our analysis shows that: (i) the SGS is possible in d-wave
superconductors, (ii) the existence of bound states within the gap results in
an even-odd effect in the SGS, (iii) elastic scattering mechanisms, like
impurities or surface roughness, may suppress the SGS, and (iv) in the presence
of a magnetic field the Doppler shift of the Andreev bound states leads to a
very peculiar splitting of the SGS, which is an unambiguous fingerprint of
d-wave superconductivity.Comment: Revtex4, 4 pages, 5 figure
Nuclear spin-lattice relaxation rate in the D+iD superconducting state: implications for CoO superconductor
We calculated the nuclear spin-lattice relaxation rate for the D+iD
superconducting state with impurities. We found that small amount of unitary
impurities quickly produces the residual density of states inside the gap. As a
result, the T-linear behavior in 1/T is observed at low temperatures. Our
results show that the D+iD pairing symmetry of the superconducting state of
NaCoOH O is compatible with recent Co 1/T
experiments of several groups.Comment: 5 pages, 4 figures, minor change
Thermodynamic Potential for Superfluid 3He in Aerogel
We present a free energy functional for superfluid 3He in the presence of
homogeneously distributed impurity disorder which extends the Ginzburg-Landau
free energy functional to all temperatures. We use the new free energy
functional to calculate the thermodynamic potential, entropy, heat capacity and
density of states for the B-phase of superfluid 3He in homogeneous, isotropic
aerogel.Comment: 10 pages, 4 figure
Interface effects on the shot noise in normal metal- d-wave superconductor Junctions
The current fluctuation in normal metal / d-wave superconductor junctions are
studied for various orientation of the crystal by taking account of the spatial
variation of the pair potentials. Not only the zero-energy Andreev bound states
(ZES) but also the non-zero energy Andreev bound states influence on the
properties of differential shot noise. At the tunneling limit, the noise power
to current ratio at zero voltage becomes 0, once the ZES are formed at the
interface. Under the presence of a subdominant s-wave component at the
interface which breaks time-reversal symmetry, the ratio becomes 4eComment: 13 pages, 3 figure
Quasiclassical description of transport through superconducting contacts
We present a theoretical study of transport properties through
superconducting contacts based on a new formulation of boundary conditions that
mimics interfaces for the quasiclassical theory of superconductivity. These
boundary conditions are based on a description of an interface in terms of a
simple Hamiltonian. We show how this Hamiltonian description is incorporated
into quasiclassical theory via a T-matrix equation by integrating out
irrelevant energy scales right at the onset. The resulting boundary conditions
reproduce results obtained by conventional quasiclassical boundary conditions,
or by boundary conditions based on the scattering approach. This formalism is
well suited for the analysis of magnetically active interfaces as well as for
calculating time-dependent properties such as the current-voltage
characteristics or as current fluctuations in junctions with arbitrary
transmission and bias voltage. This approach is illustrated with the
calculation of Josephson currents through a variety of superconducting
junctions ranging from conventional to d-wave superconductors, and to the
analysis of supercurrent through a ferromagnetic nanoparticle. The calculation
of the current-voltage characteristics and of noise is applied to the case of a
contact between two d-wave superconductors. In particular, we discuss the use
of shot noise for the measurement of charge transferred in a multiple Andreev
reflection in d-wave superconductors
Non-Equilibrium Quasiclassical Theory for Josephson Structures
We present a non-equilibrium quasiclassical formalism suitable for studying
linear response ac properties of Josephson junctions. The non-equilibrium
self-consistency equations are satisfied, to very good accuracy, already in
zeroth iteration. We use the formalism to study ac Josephson effect in a
ballistic superconducting point contact. The real and imaginary parts of the ac
linear conductance are calculated both analytically (at low frequencies) and
numerically (at arbitrary frequency). They show strong temperature, frequency,
and phase dependence. Many anomalous properties appear near phi = pi. We
ascribe them to the presence of zero energy bound states.Comment: 11 pages, 9 figures, Final version to appear in PR
Localized surface states in HTSC: Alternative mechanism of zero-bias conductance peaks
It is shown that the quasiparticle states localized in the vicinity of
surface imperfections of atomic size can be responsible for the zero-bias
tunneling conductance peaks in high-Tc superconductors. The contribution from
these states can be easily separated from other mechanisms using their
qualitatively different response on an external magnetic field.Comment: REVTeX, 4 pages, 2 figs; to be published in PR
Response, relaxation and transport in unconventional superconductors
We investigate the collision-limited electronic Raman response and the
attenuation of ultrasound in spin-singlet d-wave superconductors at low
temperatures. The dominating elastic collisions are treated within a t-matrix
approximation, which combines the description of weak (Born) and strong
(unitary) impurity scattering. In the long wavelength limit a two-fluid
description of both response and transport emerges. Collisions are here seen to
exclusively dominate the relaxational dynamics of the (Bogoliubov)
quasiparticle system and the analysis allows for a clear connection of response
and transport phenomena. When applied to quasi-2-d superconductors like the
cuprates, it turns out that the transport parameter associated with the Raman
scattering intensity for B1g and B2g photon polarization is closely related to
the corresponding components of the shear viscosity tensor, which dominates the
attenuation of ultrasound. At low temperatures we present analytic solutions of
the transport equations, resulting in a non-power-law behavior of the transport
parameters on temperature.Comment: 22 pages, 3 figure
Josephson currents through spin-active interfaces
The Josephson coupling of two isotropic s-wave superconductors through a
small, magnetically active junction is studied. This is done as a function of
junction transparency and of the degree of spin-mixing occurring in the
barrier. In the tunneling limit, the critical current shows an anomalous 1/T
temperature dependence at low temperatures and for certain magnetic
realizations of the junction. The behavior of the Josephson current is governed
by Andreev bound states appearing within the superconducting gap and the
position of these states in energy is tunable with the magnetic properties of
the barrier. This study is done using the equilibrium part of the
quasiclassical Zaitsev-Millis-Rainer-Sauls boundary condition for spin-active
interfaces and a general solution of the boundary condition is found. This
solution is a generalization of the one recently presented by Eschrig [M.
Eschrig, Phys. Rev B 61, 9061 (2000)] for spin-conserving interfaces and allows
an effective treatment of the problem of a superconductor in proximity to a
magnetically active material.Comment: 8 pages + 3 eps figure