33 research outputs found
An interacting scalar field and the recent cosmic acceleration
In this paper it is shown that the Brans - Dicke scalar field itself can
serve the purpose of providing an early deceleration and a late time
acceleration of the universe without any need of quintessence field if one
considers an interaction, i.e, transfer of energy between the dark matter and
the Brans - Dicke scalar field.Comment: 10 pages, 2 figure
Thermoelectric power of nondegenerate Kane semiconductors under the conditions of mutual electron-phonon drag in a high electric field
The thermoelectric power of nondegenerate Kane semiconductors with due regard
for the electron and phonon heating, and their thermal and mutual drags is
investigated. The electron spectrum is taken in the Kane two-band form. It is
shown that the nonparabolicity of electron spectrum significantly influences
the magnitude of the thermoelectric power and leads to a change of its sign and
dependence on the heating electric field. The field dependence of the
thermoelectric power is determined analytically under various drag conditions.Comment: 25 pages, RevTex formatted, 3 table
Thermal conductivity via magnetic excitations in spin-chain materials
We discuss the recent progress and the current status of experimental
investigations of spin-mediated energy transport in spin-chain and spin-ladder
materials with antiferromagnetic coupling. We briefly outline the central
results of theoretical studies on the subject but focus mainly on recent
experimental results that were obtained on materials which may be regarded as
adequate physical realizations of the idealized theoretical model systems. Some
open questions and unsettled issues are also addressed.Comment: 17 pages, 4 figure
Singularities in scalar-tensor gravity
The analysis of certain singularities in scalar-tensor gravity contained in a
recent paper is completed, and situations are pointed out in which these
singularities cannot occur.Comment: 6 pages, LaTe
Jamming at Zero Temperature and Zero Applied Stress: the Epitome of Disorder
We have studied how 2- and 3- dimensional systems made up of particles
interacting with finite range, repulsive potentials jam (i.e., develop a yield
stress in a disordered state) at zero temperature and applied stress. For each
configuration, there is a unique jamming threshold, , at which
particles can no longer avoid each other and the bulk and shear moduli
simultaneously become non-zero. The distribution of values becomes
narrower as the system size increases, so that essentially all configurations
jam at the same in the thermodynamic limit. This packing fraction
corresponds to the previously measured value for random close-packing. In fact,
our results provide a well-defined meaning for "random close-packing" in terms
of the fraction of all phase space with inherent structures that jam. The
jamming threshold, Point J, occurring at zero temperature and applied stress
and at the random close-packing density, has properties reminiscent of an
ordinary critical point. As Point J is approached from higher packing
fractions, power-law scaling is found for many quantities. Moreover, near Point
J, certain quantities no longer self-average, suggesting the existence of a
length scale that diverges at J. However, Point J also differs from an ordinary
critical point: the scaling exponents do not depend on dimension but do depend
on the interparticle potential. Finally, as Point J is approached from high
packing fractions, the density of vibrational states develops a large excess of
low-frequency modes. All of these results suggest that Point J may control
behavior in its vicinity-perhaps even at the glass transition.Comment: 21 pages, 20 figure
Observational Consequences of Evolution of Primordial Fluctuations in Scalar-Tensor Cosmology
Evolution of primordial fluctuations in a Brans-Dicke type scalar-tensor
gravity theory is comprehensively investigated. The harmonic attractor model,
in which the scalar field has its harmonic effective potential in the Einstein
conformal frame and the theory relaxes toward Einstein gravity with time, is
considered. The evolution of adiabatic initial perturbations in flat SCDM
models is examined from the radiation-dominated epoch up to the present. We
discuss how the scalar-tensor gravity affects the evolution of metric and
matter perturbations, mainly focusing on the observational consequences, i.e.,
the matter power spectrum and the power spectrum of cosmic microwave background
temperature. We find that the early time deviation is characterized only by the
large static gravitational constant while the late time behavior is
qualitatively different from that in Einstein gravity because the time
variation of the gravitational constant and its fluctuation have non-negligible
effects. The attracting scalar-tensor gravity affects only small scale modes
due to its attracting nature, the degree of which is far beyond the
post-Newtonian deviation at the present epoch.Comment: 18 page
Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Ρ ΠΊ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ΅ Π½Π΅ΠΉΡΠΎΡΠ½Π΄ΠΎΠΊΡΠΈΠ½Π½ΡΡ ΠΎΠΏΡΡ ΠΎΠ»Π΅ΠΉ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π±Π°Π·Ρ Π΄Π°Π½Π½ΡΡ
Aim: Combined clinical and morphological analysis of the pancreatic neuroendocrine tumor (pNET) spectrum according to the new World Health Organization classification: patient distribution, hormonal status, morphological grading, somatostatin receptor 2 (SSR2) and 5 (SSR5) expression, the choice of tissue-specific markers for the differential diagnosis of primary NET in the pancreas based on metastases with unknown primary tumor.Materials and methods: The study was performed with 472 tissue samples from pNETs taken from patients. Morphological analysis consisted of histological and immunohistochemical examination with a panel of antibodies to chromogranin A, synaptophysin, CD56, insulin, glucagon, somatostatin, gastrin, calcitonin, adrenocorticotropic hormone (ACTH), serotonin, pancreatic polypeptide, cytokeratins (CK) of a wide spectrum, CK7 and CK19, p53, Ki-67, SSR 2 and SSR5, PDX-1, Isl-1, and NESP-55.Results: In women, the prevalence of pNETS was 2.3 higher than in men (2.3:1). We were able to identify 299 (63.3%) insulinomas, 134 (28.4%) non-functioning NETs, 28 (5.9%) gastrinomas and 1.8% rare tumors (somatostatinomas, βcalcitoninomasβ and ACTH-producing). Metastatic tumors were found in 16.5% of the cases. Multiple endocrine neoplasia syndrome type 1 was confirmed in 11.9% of the pNET patients, and in 30.8% of those aged below 30 years. Multiple tumors (2 to 10) were found in 32 patients by the time of the diagnosis or occurred at 7 to 18 years after initial surgery. 28.3% of the tumors were CK19-positive, with 54.4% of them being metastatic. Insulinomas were least prone to metastasizing (5.7% of the cases), with 41.2% of them being CK19-positive. Metastases were found in 70.4, 66.7, 100, and 100% of gastrinomas, βcalcitoninomasβ, ACTH-producing, and somatostatinomas, respectively, with CK19-positivity found in 85.2, 66.7, 66.7, and 100% of these tumors. SSR2 expression was observed in all gastrinomas and βcalcitoninomasβ, in 90.5% of βglucagonomasβ, 85.7% of PPomas, and 66.7% of somatostatinomas. SSR5 expression was significantly less frequent. 86.3% of the studied tumors were PDX-1-positive: all somatostatinomas, 97.4% of insulinomas, 92.3% of gastrinomas, 83.3% of PPomas, 80% of the non-functioning NETs. PDX-1-negativity was identified in all βcalcitoninomasβ and in 57.1% of the non-functioning βglucagonomasβ. 83.3% and 90.9% of the pNETs were Isl-1 and NESP-55-positive, respectively.Conclusion: Combined morphological and immunohistochemical examination of pNETs allows for the correct diagnosis, assessment of their prognosis and choice of the most effective treatment. The malignancy grade of pNETs depends on the cell immunophenotype and is higher in the cases with co-expression of the markers of neuroendocrine and ductal differentiation (CK19), as well as with ectopic hormonal production.Π¦Π΅Π»Ρ β ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠΉ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠΏΠ΅ΠΊΡΡΠ° Π½Π΅ΠΉΡΠΎΡΠ½Π΄ΠΎΠΊΡΠΈΠ½Π½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ (ΠΠΠ) ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ (ΠΠ) ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ Π½ΠΎΠ²ΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΡΠ΅ΠΌΠΈΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ Π·Π΄ΡΠ°Π²ΠΎΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ (2017): ΡΠΎΡΡΠ°Π² ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², Π³ΠΎΡΠΌΠΎΠ½Π°Π»ΡΠ½ΡΠΉ ΡΡΠ°ΡΡΡ, ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΡΠΈΡΠ΅ΡΠΈΠΈ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ, ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΠΊ ΡΠΎΠΌΠ°ΡΠΎΡΡΠ°ΡΠΈΠ½Ρ 2 (Π‘Π‘Π 2) ΠΈ 5-Π³ΠΎ ΡΠΈΠΏΠΎΠ² (Π‘Π‘Π 5), Π²ΡΠ±ΠΎΡ ΡΠΊΠ°Π½Π΅ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ² Π΄Π»Ρ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΠΠ Π² ΠΠ ΠΏΠΎ ΠΌΠ΅ΡΠ°ΡΡΠ°Π·Π°ΠΌ Π±Π΅Π· ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ°Π³Π°.ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΡΠ»ΡΠΆΠΈΠ»ΠΈ 472 ΠΎΠ±ΡΠ°Π·ΡΠ° ΡΠΊΠ°Π½ΠΈ ΠΠΠ ΠΠ ΠΎΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ². ΠΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· Π²ΠΊΠ»ΡΡΠ°Π» Π³ΠΈΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΠ³ΠΈΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌ Π°Π½ΡΠΈΡΠ΅Π» ΠΊ Ρ
ΡΠΎΠΌΠΎΠ³ΡΠ°Π½ΠΈΠ½Ρ Π, ΡΠΈΠ½Π°ΠΏΡΠΎΡΠΈΠ·ΠΈΠ½Ρ, CD56, ΠΈΠ½ΡΡΠ»ΠΈΠ½Ρ, Π³Π»ΡΠΊΠ°Π³ΠΎΠ½Ρ, ΡΠΎΠΌΠ°ΡΠΎΡΡΠ°ΡΠΈΠ½Ρ, Π³Π°ΡΡΡΠΈΠ½Ρ, ΠΊΠ°Π»ΡΡΠΈΡΠΎΠ½ΠΈΠ½Ρ, Π°Π΄ΡΠ΅Π½ΠΎΠΊΠΎΡΡΠΈΠΊΠΎΡΡΠΎΠΏΠ½ΠΎΠΌΡ Π³ΠΎΡΠΌΠΎΠ½Ρ (ΠΠΠ’Π), ΡΠ΅ΡΠΎΡΠΎΠ½ΠΈΠ½Ρ, ΠΏΠ°Π½ΠΊΡΠ΅Π°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡΠΈΠ΄Ρ, ΡΠΈΡΠΎΠΊΠ΅ΡΠ°ΡΠΈΠ½Π°ΠΌ (Π¦Π) ΡΠΈΡΠΎΠΊΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ°, Π¦Π 7 ΠΈ 19, p53, Ki-67, Π‘Π‘Π 2 ΠΈ Π‘Π‘Π 5, PDX-1, Isl-1, NESP55.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΠ ΠΠ Π²ΡΡΡΠ΅ΡΠ°Π»ΠΈΡΡ Ρ ΠΆΠ΅Π½ΡΠΈΠ½ Π² 2,3 ΡΠ°Π·Π° ΡΠ°ΡΠ΅, ΡΠ΅ΠΌ Ρ ΠΌΡΠΆΡΠΈΠ½ (2,3:1). ΠΡΠ»ΠΈ Π²Π΅ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ 299 (63,3%) ΠΈΠ½ΡΡΠ»ΠΈΠ½ΠΎΠΌ, 134 (28,4%) Π½Π΅ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΡΡΡΠΈΡ
ΠΠΠ, 28 (5,9%) Π³Π°ΡΡΡΠΈΠ½ΠΎΠΌ ΠΈ 1,8% ΡΠ΅Π΄ΠΊΠΈΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ (ΡΠΎΠΌΠ°ΡΠΎΡΡΠ°ΡΠΈΠ½ΠΎΠΌ, Β«ΠΊΠ°Π»ΡΡΠΈΡΠΎΠ½ΠΈΠ½ΠΎΠΌΒ» ΠΈ ΠΠΠ’Π-ΠΏΡΠΎΠ΄ΡΡΠΈΡΡΡΡΠΈΡ
). ΠΠ΅ΡΠ°ΡΡΠ°Π·Ρ Π±ΡΠ»ΠΈ Π²ΡΡΠ²Π»Π΅Π½Ρ Π² 16,5% ΡΠ»ΡΡΠ°Π΅Π². Π‘ΠΈΠ½Π΄ΡΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠ½Π΄ΠΎΠΊΡΠΈΠ½Π½ΡΡ
Π½Π΅ΠΎΠΏΠ»Π°Π·ΠΈΠΉ 1-Π³ΠΎ ΡΠΈΠΏΠ° Π±ΡΠ» ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ Ρ 11,9% ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΠΠ ΠΠ, Π° Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ Π΄ΠΎ 30 Π»Π΅Ρ β Π² 30,8% ΡΠ»ΡΡΠ°Π΅Π². ΠΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ (ΠΎΡ 2 Π΄ΠΎ 10) Ρ 32 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π±ΡΠ»ΠΈ Π½Π° ΠΌΠΎΠΌΠ΅Π½Ρ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° ΠΈΠ»ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π»ΠΈ ΡΠ΅ΡΠ΅Π· 7β18 Π»Π΅Ρ ΠΏΠΎΡΠ»Π΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ. Π¦Π19-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΡΠΌΠΈ Π±ΡΠ»ΠΈ 28,3% ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ, ΠΈΠ· Π½ΠΈΡ
54,4% Ρ ΠΌΠ΅ΡΠ°ΡΡΠ°Π·Π°ΠΌΠΈ. Π Π΅ΠΆΠ΅ Π²ΡΠ΅Π³ΠΎ (Π² 5,7% ΡΠ»ΡΡΠ°Π΅Π²) ΠΌΠ΅ΡΠ°ΡΡΠ°Π·Ρ Π±ΡΠ»ΠΈ ΠΏΡΠΈ ΠΈΠ½ΡΡΠ»ΠΈΠ½ΠΎΠΌΠ°Ρ
, ΠΈΠ· Π½ΠΈΡ
41,2% Π±ΡΠ»ΠΈ Π¦Π19-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΡΠΌΠΈ. ΠΠ΅ΡΠ°ΡΡΠ°Π·Ρ Π² Π³Π°ΡΡΡΠΈΠ½ΠΎΠΌΠ°Ρ
, Β«ΠΊΠ°Π»ΡΡΠΈΡΠΎΠ½ΠΈΠ½ΠΎΠΌΠ°Ρ
Β», ΠΠΠ’Π-ΠΏΡΠΎΠ΄ΡΡΠΈΡΡΡΡΠΈΡ
ΠΎΠΏΡΡ
ΠΎΠ»ΡΡ
, ΡΠΎΠΌΠ°ΡΠΎΡΡΠ°ΡΠΈΠ½ΠΎΠΌΠ°Ρ
Π²ΡΡΡΠ΅ΡΠ°Π»ΠΈΡΡ Π² 70,4, 66,7, 100 ΠΈ 100% ΡΠ»ΡΡΠ°Π΅Π², Π¦Π19-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΡΠΌΠΈ Π±ΡΠ»ΠΈ 85,2, 66,7, 66,7 ΠΈ 100% ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΠΊΡΠΏΡΠ΅ΡΡΠΈΡ Π‘Π‘Π 2 Π½Π°Π±Π»ΡΠ΄Π°Π»Π°ΡΡ Π²ΠΎ Π²ΡΠ΅Ρ
Π³Π°ΡΡΡΠΈΠ½ΠΎΠΌΠ°Ρ
ΠΈ Β«ΠΊΠ°Π»ΡΡΠΈΡΠΎΠ½ΠΈΠ½ΠΎΠΌΠ°Ρ
Β», Π² 90,5% Β«Π³Π»ΡΠΊΠ°Π³ΠΎΠ½ΠΎΠΌΒ», 85,7% Β«ΠΏΠΈΠΏΠΎΠΌΒ», 66,7% ΡΠΎΠΌΠ°ΡΠΎΡΡΠ°ΡΠΈΠ½ΠΎΠΌ; ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ Π‘Π‘Π 5 ΠΎΡΠΌΠ΅ΡΠ΅Π½Π° Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ΅ΠΆΠ΅. PDX-1-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΡΠΌΠΈ Π±ΡΠ»ΠΈ 86,3% ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ, Π²ΡΠ΅ (100%) ΡΠΎΠΌΠ°ΡΠΎΡΡΠ°ΡΠΈΠ½ΠΎΠΌΡ, 97,4% ΠΈΠ½ΡΡΠ»ΠΈΠ½ΠΎΠΌ, 92,3% Π³Π°ΡΡΡΠΈΠ½ΠΎΠΌ, 83,3% Β«ΠΏΠΈΠΏΠΎΠΌΒ», 80% Π½Π΅ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΡΡΡΠΈΡ
ΠΠΠ, PDX-1Π½Π΅Π³Π°ΡΠΈΠ²Π½ΡΠΌΠΈ β Π²ΡΠ΅ (100%) Β«ΠΊΠ°Π»ΡΡΠΈΡΠΎΠ½ΠΈΠ½ΠΎΠΌΡΒ» ΠΈ 57,1% Π½Π΅ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΡΡΡΠΈΡ
Β«Π³Π»ΡΠΊΠ°Π³ΠΎΠ½ΠΎΠΌΒ». Isl-1 ΠΈ NESP-55-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΡΠΌΠΈ Π±ΡΠ»ΠΈ 83,3 ΠΈ 90,9% ΠΠΠ ΠΠ.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ΅ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΠ³ΠΈΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΠΠ ΠΠ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ ΠΏΠΎΡΡΠ°Π²ΠΈΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΠ·, ΠΎΡΠ΅Π½ΠΈΡΡ ΠΏΡΠΎΠ³Π½ΠΎΠ· ΠΈ Π²ΡΠ±ΡΠ°ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ Π»Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π» ΠΠΠ ΠΠ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅Π½ΠΎΡΠΈΠΏΠ° ΠΊΠ»Π΅ΡΠΎΠΊ, ΠΎΠ½ Π²ΡΡΠ΅ ΠΏΡΠΈ ΠΊΠΎ-ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ² Π½Π΅ΠΉΡΠΎΡΠ½Π΄ΠΎΠΊΡΠΈΠ½Π½ΠΎΠΉ ΠΈ ΠΏΡΠΎΡΠΎΠΊΠΎΠ²ΠΎΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²ΠΊΠΈ (Π¦Π19) ΠΈ ΠΏΡΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΡΠΊΡΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
Π³ΠΎΡΠΌΠΎΠ½ΠΎΠ²