8,191 research outputs found

    Transverse Mass Distribution Characteristics of π0\pi^0 Production in 208^{208}Pb-induced Reactions and the Combinational Approach

    Full text link
    The nature of invariant cross-sections and multiplicities in some 208Pb^{208}Pb-induced reactions and some important ratio-behaviours of the invariant multiplicities for various centralities of the collision will here be dealt with in the light of a combinational approach which has been built up in the recent past by the present authors. Next, the results would be compared with the outcome of some of the simulation-based standard models for multiple production in nuclear collisions at high energies. Finally, the implications of all this would be discussed.Comment: 14 pages, 14 figures, a few changes have been made in the tex

    A note on the time evolution of generalized coherent states

    Get PDF
    I consider the time evolution of generalized coherent states based on non-standard fiducial vectors, and show that only for a restricted class of fiducial vectors does the associated classical motion determine the quantum evolution of the states. I discuss some consequences of this for path integral representations.Comment: 9 pages. RevTe

    Constrained Dynamics for Quantum Mechanics I. Restricting a Particle to a Surface

    Get PDF
    We analyze constrained quantum systems where the dynamics do not preserve the constraints. This is done in particular for the restriction of a quantum particle in Euclidean n-space to a curved submanifold, and we propose a method of constraining and dynamics adjustment which produces the right Hamiltonian on the submanifold when tested on known examples. This method we hope will become the germ of a full Dirac algorithm for quantum constraints. We take a first step in generalising it to the situation where the constraint is a general selfadjoint operator with some additional structures.Comment: 49 pages, TEX, input files amssym.def, amssym.te

    On the Groenewold-Van Hove problem for R^{2n}

    Full text link
    We discuss the Groenewold-Van Hove problem for R^{2n}, and completely solve it when n = 1. We rigorously show that there exists an obstruction to quantizing the Poisson algebra of polynomials on R^{2n}, thereby filling a gap in Groenewold's original proof without introducing extra hypotheses. Moreover, when n = 1 we determine the largest Lie subalgebras of polynomials which can be unambiguously quantized, and explicitly construct all their possible quantizations.Comment: 15 pages, Latex. Error in the proof of Prop. 3 corrected; minor rewritin

    Description of isolated macroscopic systems inside quantum mechanics

    Get PDF
    For an isolated macrosystem classical state parameters ζ(t)\zeta(t) are introduced inside a quantum mechanical treatment. By a suitable mathematical representation of the actual preparation procedure in the time interval [T,t0][T,t_0] a statistical operator is constructed as a solution of the Liouville von Neumann equation, exhibiting at time tt the state parameters ζ(tâ€Č)\zeta(t'), t0≀tâ€Č≀tt_0\leq t' \leq t, and {\it preparation parameters} related to times T≀tâ€Č≀t0T \leq t'\leq t_0. Relation with Zubarev's non-equilibrium statistical operator is discussed. A mechanism for memory loss is investigated and time evolution by a semigroup is obtained for a restricted set of relevant observables, slowly varying on a suitable time scale.Comment: 13 pages, latex, romp31 style, no figures, to appear in the Proceedings of the XXXI Symposium on Mathematical Physics (Torun, Poland), to be published in Rep. Math. Phy

    Relaxation properties of the quantum kinetics of carrier-LO-phonon interaction in quantum wells and quantum dots

    Full text link
    The time evolution of optically excited carriers in semiconductor quantum wells and quantum dots is analyzed for their interaction with LO-phonons. Both the full two-time Green's function formalism and the one-time approximation provided by the generalized Kadanoff-Baym ansatz are considered, in order to compare their description of relaxation processes. It is shown that the two-time quantum kinetics leads to thermalization in all the examined cases, which is not the case for the one-time approach in the intermediate-coupling regime, even though it provides convergence to a steady state. The thermalization criterion used is the Kubo-Martin-Schwinger condition.Comment: 7 pages, 8 figures, accepted for publication in Phys. Rev.

    Decoherence time in self-induced decoherence

    Full text link
    A general method for obtaining the decoherence time in self-induced decoherence is presented. In particular, it is shown that such a time can be computed from the poles of the resolvent or of the initial conditions in the complex extension of the Hamiltonian's spectrum. Several decoherence times are estimated: 10−13−10^{-13}- 10−15s10^{-15}s for microscopic systems, and 10−37−10−39s10^{-37}-10^{-39}s for macroscopic bodies. For the particular case of a thermal bath, our results agree with those obtained by the einselection (environment-induced decoherence) approach.Comment: 11 page

    Self-induced decoherence approach: Strong limitations on its validity in a simple spin bath model and on its general physical relevance

    Get PDF
    The "self-induced decoherence" (SID) approach suggests that (1) the expectation value of any observable becomes diagonal in the eigenstates of the total Hamiltonian for systems endowed with a continuous energy spectrum, and (2), that this process can be interpreted as decoherence. We evaluate the first claim in the context of a simple spin bath model. We find that even for large environments, corresponding to an approximately continuous energy spectrum, diagonalization of the expectation value of random observables does in general not occur. We explain this result and conjecture that SID is likely to fail also in other systems composed of discrete subsystems. Regarding the second claim, we emphasize that SID does not describe a physically meaningful decoherence process for individual measurements, but only involves destructive interference that occurs collectively within an ensemble of presupposed "values" of measurements. This leads us to question the relevance of SID for treating observed decoherence effects.Comment: 11 pages, 4 figures. Final published versio
    • 

    corecore