225 research outputs found

    Vortex pinning in high-Tc materials via randomly oriented columnar defects, created by GeV proton-induced fission fragments

    Full text link
    Extensive work has shown that irradiation with 0.8 GeV protons can produce randomly oriented columnar defects (CD's) in a large number of HTS materials, specifically those cuprates containing Hg, Tl, Pb, Bi, and similar heavy elements. Absorbing the incident proton causes the nucleus of these species to fission, and the recoiling fission fragments create amorphous tracks, i.e., CD's. The superconductive transition temperature Tc decreases linearly with proton fluence and we analyze how the rate depends on the family of superconductors. In a study of Tl-2212 materials, adding defects decreases the equilibrium magnetization Meq(H) significantly in magnitude and changes its field dependence; this result is modeled in terms of vortex pinning. Analysis of the irreversible magnetization and its time dependence shows marked increases in the persistent current density and effective pinning energy, and leads to an estimate for the elementary attempt time for vortex hopping, tau ~ 4x10^(-9) s.Comment: Submitted to Physica C; presentation at ISS-2001. PDF file only, 13 pp. tota

    Universal linear relations between susceptibility and Tc in cuprates

    Full text link
    We developed an experimental method for measuring the intrinsic susceptibility \chi of powder of cuprate superconductors in the zero field limit using a DC-magnetometer. The method is tested with lead spheres. Using this method we determine \chi for a number of cuprate families as a function of doping. A universal linear (and not proportionality) relation between Tc and \chi is found. We suggest possible explanations for this phenomenon.Comment: Accepted for publication in PR

    Zeeman and Orbital Limiting Fields: Separated Spin and Charge Degrees of Freedom in Cuprate Superconductors

    Full text link
    Recent in-plane thermal (Nernst) and interlayer (tunnelling) transport experiments in Bi2_2Sr2_2CaCu2_2O8+y_{8+y} high temperature superconductors report hugely different limiting magnetic fields. Based on pairing (and the uncertainty principle) combined with the definitions of the Zeeman energy and the magnetic length, we show that in the underdoped regime both fields convert to the same (normal state) pseudogap energy scale TT^* upon transformation as orbital and spin (Zeeman) critical fields, respectively. We reconcile these seemingly disparate findings invoking separated spin and charge degrees of freedom residing in different regions of a truncated Fermi surface.Comment: 4 pages, 3 figures; accepted for publication in Phys. Rev. B (Rapid Comm.

    Suppression of matching field effects by splay and pinning energy dispersion in YBa_2Cu_3O_7 with columnar defects

    Full text link
    We report measurements of the irreversible magnetization M_i of a large number of YBa_2Cu_3O_7 single crystals with columnar defects (CD). Some of them exhibit a maximum in M_i when the density of vortices equals the density of tracks, at temperatures above 40K. We show that the observation of these matching field effects is constrained to those crystals where the orientational and pinning energy dispersion of the CD system lies below a certain threshold. The amount of such dispersion is determined by the mass and energy of the irradiation ions, and by the crystal thickness. Time relaxation measurements show that the matching effects are associated with a reduction of the creep rate, and occur deep into the collective pinning regime.Comment: 7 pages, 5 figures, submitted to Phys. Rev.

    The Effect of Splayed Pins on Vortex Creep and Critical Currents

    Full text link
    We study the effects of splayed columnar pins on the vortex motion using realistic London Langevin simulations. At low currents vortex creep is strongly suppressed, whereas the critical current j_c is enhanced only moderately. Splaying the pins generates an increasing energy barrier against vortex hopping, and leads to the forced entanglement of vortices, both of which suppress creep efficiently. On the other hand splaying enhances kink nucleation and introduces intersecting pins, which cut off the energy barriers. Thus the j_c enhancement is strongly parameter sensitive. We also characterize the angle dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure

    Повышение эффективности взаимодействия проектировщиков бортовой радиоэлектронной аппаратуры космических аппаратов на базе интеграции информационных систем

    Get PDF
    Предложен подход реализации информационного взаимодействия проектировщиков бортовой радиоэлектронной аппаратуры, повышающий эффективность использования ресурсов и управление производственными процессами. Представлена концепция практической реализации предложенного подхода в среде PLM-системы Enovia SmarTeam. Разработан алгоритм сохранения данных проектов EDA-системы Altium Designer в хранилище данных PLM-системы Enovia SmarTeam. Сформирован механизм генерации конструкторских документов на базе формата хранения данных JSON

    Stable ultrahigh-density magneto-optical recordings using introduced linear defects

    Full text link
    The stability of data bits in magnetic recording media at ultrahigh densities is compromised by thermal `flips' -- magnetic spin reversals -- of nano-sized spin domains, which erase the stored information. Media that are magnetized perpendicular to the plane of the film, such as ultrathin cobalt films or multilayered structures, are more stable against thermal self-erasure than conventional memory devices. In this context, magneto-optical memories seem particularly promising for ultrahigh-density recording on portable disks, and bit densities of \sim100 Gbit inch2^{-2} have been demonstrated using recent advances in the bit writing and reading techniques. But the roughness and mobility of the magnetic domain walls prevents closer packing of the magnetic bits, and therefore presents a challenge to reaching even higher bit densities. Here we report that the strain imposed by a linear defect in a magnetic thin film can smooth rough domain walls over regions hundreds of micrometers in size, and halt their motion. A scaling analysis of this process, based on the generic physics of disorder-controlled elastic lines, points to a simple way by which magnetic media might be prepared that can store data at densities in excess of 1 Tbit inch2^{-2}.Comment: 5 pages, 4 figures, see also an article in TRN News at http://www.trnmag.com/Stories/041801/Defects_boost_disc_capacity_041801.htm

    Field-induced quantum critical route to a Fermi liquid in high-temperature superconductors

    Full text link
    In high transition temperature (T_c) superconductivity, charge doping is a natural tuning parameter that takes copper oxides from the antiferromagnet to the superconducting region. In the metallic state above T_c the standard Landau's Fermi-liquid theory of metals as typified by the temperature squared (T^2) dependence of resistivity appears to break down. Whether the origin of the non-Fermi-liquid behavior is related to physics specific to the cuprates is a fundamental question still under debate. We uncover a new transformation from the non-Fermi- to a standard Fermi-liquid state driven not by doping but by magnetic field in the overdoped high-T_c superconductor Tl_2Ba_2CuO_{6+x}. From the c-axis resistivity measured up to 45 T, we show that the Fermi-liquid features appear above a sufficiently high field which decreases linearly with temperature and lands at a quantum critical point near the superconductivity's upper critical field -- with the Fermi-liquid coefficient of the T^2 dependence showing a power-law diverging behavior on the approach to the critical point. This field-induced quantum criticality bears a striking resemblance to that in quasi-two dimensional heavy-Fermion superconductors, suggesting a common underlying spin-related physics in these superconductors with strong electron correlations.Comment: 6 pages, 4 figure

    Effect of Na doping on flux pinning of YBa1.9Na0.1Cu3O7-d

    Full text link
    We have prepared Na-doped YBa2Cu3Oy (YBa1.9Na0.1Cu3Oy +40mol%Y211) (YBNCO) and Na-free YBa2Cu3Oy (YBCO) samples by the Melt-Textured Growth (MTG) method to study the effect of doped Na ion on flux pinning. The ac susceptibility curves (acs) as well as the hysteresis loops were measured for the samples. Then the effective pinning energy (U(T,Hdc,J)), irreversibility line (Hirr(T)) and critical current density (jc(Hdc)) were determined, where T, Hdc and J are temperature, dc magnetic field and current density, respectively. We found that, with Na doping, the Hirr(T) line shifted to lower temperature while the Jc(Hdc) and U(T,Hdc,J) became smaller. It indicates that the Na ions play a negative role in the flux pinning of YBCO. The appearance of the second peak in the Jc(Hdc) curves and the enhancement of anisotropy in YBNCO further support this finding.Comment: 7 pages, 7figures. Submited to Physica.
    corecore