225 research outputs found
Vortex pinning in high-Tc materials via randomly oriented columnar defects, created by GeV proton-induced fission fragments
Extensive work has shown that irradiation with 0.8 GeV protons can produce
randomly oriented columnar defects (CD's) in a large number of HTS materials,
specifically those cuprates containing Hg, Tl, Pb, Bi, and similar heavy
elements. Absorbing the incident proton causes the nucleus of these species to
fission, and the recoiling fission fragments create amorphous tracks, i.e.,
CD's. The superconductive transition temperature Tc decreases linearly with
proton fluence and we analyze how the rate depends on the family of
superconductors. In a study of Tl-2212 materials, adding defects decreases the
equilibrium magnetization Meq(H) significantly in magnitude and changes its
field dependence; this result is modeled in terms of vortex pinning. Analysis
of the irreversible magnetization and its time dependence shows marked
increases in the persistent current density and effective pinning energy, and
leads to an estimate for the elementary attempt time for vortex hopping, tau ~
4x10^(-9) s.Comment: Submitted to Physica C; presentation at ISS-2001. PDF file only, 13
pp. tota
Universal linear relations between susceptibility and Tc in cuprates
We developed an experimental method for measuring the intrinsic
susceptibility \chi of powder of cuprate superconductors in the zero field
limit using a DC-magnetometer. The method is tested with lead spheres. Using
this method we determine \chi for a number of cuprate families as a function of
doping. A universal linear (and not proportionality) relation between Tc and
\chi is found. We suggest possible explanations for this phenomenon.Comment: Accepted for publication in PR
Zeeman and Orbital Limiting Fields: Separated Spin and Charge Degrees of Freedom in Cuprate Superconductors
Recent in-plane thermal (Nernst) and interlayer (tunnelling) transport
experiments in BiSrCaCuO high temperature superconductors
report hugely different limiting magnetic fields. Based on pairing (and the
uncertainty principle) combined with the definitions of the Zeeman energy and
the magnetic length, we show that in the underdoped regime both fields convert
to the same (normal state) pseudogap energy scale upon transformation as
orbital and spin (Zeeman) critical fields, respectively. We reconcile these
seemingly disparate findings invoking separated spin and charge degrees of
freedom residing in different regions of a truncated Fermi surface.Comment: 4 pages, 3 figures; accepted for publication in Phys. Rev. B (Rapid
Comm.
Suppression of matching field effects by splay and pinning energy dispersion in YBa_2Cu_3O_7 with columnar defects
We report measurements of the irreversible magnetization M_i of a large
number of YBa_2Cu_3O_7 single crystals with columnar defects (CD). Some of them
exhibit a maximum in M_i when the density of vortices equals the density of
tracks, at temperatures above 40K. We show that the observation of these
matching field effects is constrained to those crystals where the orientational
and pinning energy dispersion of the CD system lies below a certain threshold.
The amount of such dispersion is determined by the mass and energy of the
irradiation ions, and by the crystal thickness. Time relaxation measurements
show that the matching effects are associated with a reduction of the creep
rate, and occur deep into the collective pinning regime.Comment: 7 pages, 5 figures, submitted to Phys. Rev.
The Effect of Splayed Pins on Vortex Creep and Critical Currents
We study the effects of splayed columnar pins on the vortex motion using
realistic London Langevin simulations. At low currents vortex creep is strongly
suppressed, whereas the critical current j_c is enhanced only moderately.
Splaying the pins generates an increasing energy barrier against vortex
hopping, and leads to the forced entanglement of vortices, both of which
suppress creep efficiently. On the other hand splaying enhances kink nucleation
and introduces intersecting pins, which cut off the energy barriers. Thus the
j_c enhancement is strongly parameter sensitive. We also characterize the angle
dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure
Повышение эффективности взаимодействия проектировщиков бортовой радиоэлектронной аппаратуры космических аппаратов на базе интеграции информационных систем
Предложен подход реализации информационного взаимодействия проектировщиков бортовой радиоэлектронной аппаратуры, повышающий эффективность использования ресурсов и управление производственными процессами. Представлена концепция практической реализации предложенного подхода в среде PLM-системы Enovia SmarTeam. Разработан алгоритм сохранения данных проектов EDA-системы Altium Designer в хранилище данных PLM-системы Enovia SmarTeam. Сформирован механизм генерации конструкторских документов на базе формата хранения данных JSON
Stable ultrahigh-density magneto-optical recordings using introduced linear defects
The stability of data bits in magnetic recording media at ultrahigh densities
is compromised by thermal `flips' -- magnetic spin reversals -- of nano-sized
spin domains, which erase the stored information. Media that are magnetized
perpendicular to the plane of the film, such as ultrathin cobalt films or
multilayered structures, are more stable against thermal self-erasure than
conventional memory devices. In this context, magneto-optical memories seem
particularly promising for ultrahigh-density recording on portable disks, and
bit densities of 100 Gbit inch have been demonstrated using recent
advances in the bit writing and reading techniques. But the roughness and
mobility of the magnetic domain walls prevents closer packing of the magnetic
bits, and therefore presents a challenge to reaching even higher bit densities.
Here we report that the strain imposed by a linear defect in a magnetic thin
film can smooth rough domain walls over regions hundreds of micrometers in
size, and halt their motion. A scaling analysis of this process, based on the
generic physics of disorder-controlled elastic lines, points to a simple way by
which magnetic media might be prepared that can store data at densities in
excess of 1 Tbit inch.Comment: 5 pages, 4 figures, see also an article in TRN News at
http://www.trnmag.com/Stories/041801/Defects_boost_disc_capacity_041801.htm
Field-induced quantum critical route to a Fermi liquid in high-temperature superconductors
In high transition temperature (T_c) superconductivity, charge doping is a
natural tuning parameter that takes copper oxides from the antiferromagnet to
the superconducting region. In the metallic state above T_c the standard
Landau's Fermi-liquid theory of metals as typified by the temperature squared
(T^2) dependence of resistivity appears to break down. Whether the origin of
the non-Fermi-liquid behavior is related to physics specific to the cuprates is
a fundamental question still under debate. We uncover a new transformation from
the non-Fermi- to a standard Fermi-liquid state driven not by doping but by
magnetic field in the overdoped high-T_c superconductor Tl_2Ba_2CuO_{6+x}. From
the c-axis resistivity measured up to 45 T, we show that the Fermi-liquid
features appear above a sufficiently high field which decreases linearly with
temperature and lands at a quantum critical point near the superconductivity's
upper critical field -- with the Fermi-liquid coefficient of the T^2 dependence
showing a power-law diverging behavior on the approach to the critical point.
This field-induced quantum criticality bears a striking resemblance to that in
quasi-two dimensional heavy-Fermion superconductors, suggesting a common
underlying spin-related physics in these superconductors with strong electron
correlations.Comment: 6 pages, 4 figure
Effect of Na doping on flux pinning of YBa1.9Na0.1Cu3O7-d
We have prepared Na-doped YBa2Cu3Oy (YBa1.9Na0.1Cu3Oy +40mol%Y211) (YBNCO)
and Na-free YBa2Cu3Oy (YBCO) samples by the Melt-Textured Growth (MTG) method
to study the effect of doped Na ion on flux pinning. The ac susceptibility
curves (acs) as well as the hysteresis loops were measured for the samples.
Then the effective pinning energy (U(T,Hdc,J)), irreversibility line (Hirr(T))
and critical current density (jc(Hdc)) were determined, where T, Hdc and J are
temperature, dc magnetic field and current density, respectively. We found
that, with Na doping, the Hirr(T) line shifted to lower temperature while the
Jc(Hdc) and U(T,Hdc,J) became smaller. It indicates that the Na ions play a
negative role in the flux pinning of YBCO. The appearance of the second peak in
the Jc(Hdc) curves and the enhancement of anisotropy in YBNCO further support
this finding.Comment: 7 pages, 7figures. Submited to Physica.
- …
